Пример #1
0
def test_net(test_loader=None, path='model.pt', batch_size=128, fname=None):

    n_batches = len(test_loader)

    model = torch.load(path)
    net = model['model']
    net.load_state_dict(model['state_dict'])
    for par in net.parameters():
        par.requires_grad = False
    net.eval()
    net = net.float()
    net = net.to('cuda')
    #writing results to spreadsheet
    if fname is None:
        fname = 'test_pred.csv'
    f_out = open(fname, "w")
    wrt = csv.writer(f_out)

    #testing metrics
    corr_cnt = 0
    total_iter = 0

    for data in test_loader:
        [inputs, labels, snr] = data
        inputs, labels = Variable(inputs).to('cuda'), Variable(labels)
        pred = net(inputs.float())

        snr = snr.numpy()
        pred = np.argmax(pred.cpu(), axis=1).numpy()
        labels = np.argmax(labels.numpy(), axis=1)
        for s, p, l in zip(snr, pred, labels):
            #wrt.writerow([s,p,l])
            if (p == l):
                corr_cnt += 1
            total_iter += 1

    print("Test done, accr = :" + str(corr_cnt / total_iter))
    f_out.close()
Пример #2
0
def train_net(train_loader=None,
              net=None,
              batch_size=128,
              n_epochs=5,
              learning_rate=0.001,
              saved_model=None,
              fname=None):
    #Print all of the hyperparameters of the training iteration:
    print("===== HYPERPARAMETERS =====")
    print("batch_size=", batch_size)
    print("epochs=", n_epochs)
    print("learning_rate=", learning_rate)
    print("=" * 30)

    #Get training and test data
    n_batches = len(train_loader)

    #Create our loss and optimizer functions
    loss, optimizer = get_loss_optimizer(net, learning_rate)

    #Time for printing
    training_start_time = time.time()

    f_out = open(fname, "w")
    wrt = csv.writer(f_out)

    total_train_loss = 0

    scheduler = StepLR(optimizer, step_size=250, gamma=0.1)
    net = net.float()
    net = net.to('cuda')
    #Loop for n_epochs
    for epoch in range(n_epochs):

        running_loss = 0.0
        print_every = n_batches // 10
        start_time = time.time()

        wrt.writerow([epoch, total_train_loss])

        total_train_loss = 0

        if (((epoch + 1) % 250) == 0):
            checkpoint = {
                'model': net,
                'state_dict': net.state_dict(),
                'optimizer': optimizer.state_dict()
            }
            file_name = 'checkpoint.pt'
            torch.save(checkpoint, file_name)

        i = 0

        for data in train_loader:

            [inputs, labels, snr] = data
            #print(inputs.shape)
            #Wrap them in a Variable object

            inputs, labels, snr = Variable(inputs).to('cuda'), Variable(
                labels).to('cuda'), Variable(snr).to('cuda')

            #inputs,labels,snr = Variable(inputs), Variable(labels), Variable(snr)
            #Set the parameter gradients to zero
            optimizer.zero_grad()
            #Forward pass, backward pass, optimize
            outputs = net(inputs.float())
            labels = labels.squeeze_().cpu()
            loss_size = loss(outputs.cpu(), np.argmax(labels, axis=1))
            #loss_size = loss(outputs, np.argmax(labels,axis=1))
            loss_size.backward()
            optimizer.step()

            #Print statistics

            running_loss += loss_size.data
            total_train_loss += loss_size.data

            #Print loss from every 10% (then resets to 0) of a batch of an epoch
            if (i + 1) % (print_every + 1) == 0:
                print("Epoch {}, {:d}% \t train_loss: {:.4f} took: {:.2f}s".
                      format(epoch + 1, int(100 * (i + 1) / n_batches),
                             total_train_loss / print_every,
                             time.time() - start_time))
                #Reset running loss and time
                running_loss = 0.0
                start_time = time.time()

            i += 1
        scheduler.step()

    print("Training finished, took {:.2f}s".format(time.time() -
                                                   training_start_time))
    final = {
        'model': net,
        'state_dict': net.state_dict(),
        'optimizer': optimizer.state_dict()
    }

    torch.save(final, saved_model)
    f_out.close()
Пример #3
0
def test_net(test_loader=None,
             path='model.pt',
             batch_size=128,
             fname=None,
             a=8,
             b=12,
             c=20):

    n_batches = len(test_loader)

    model = torch.load(path)
    net = model['model']
    net.load_state_dict(model['state_dict'])
    for par in net.parameters():
        par.requires_grad = False
    net.eval()
    net = net.float()
    net = net.to('cuda')
    #writing results to spreadsheet
    if fname is None:
        fname = 'test_pred.csv'
    f_out = open(fname, "w")
    wrt = csv.writer(f_out)

    #testing metrics
    corr_cnt = 0
    total_iter = 0
    run_max = 0
    for i in range(20, 30):
        for j in range(40, 60):
            for k in range(70, 80):
                for data in test_loader:
                    [inputs, labels, snr] = data
                    inputs, labels = Variable(inputs).to('cuda'), Variable(
                        labels)
                    pred = net(inputs.float())

                    snr = snr.numpy()
                    pred = pred.cpu().numpy()
                    labels = np.argmax(labels.numpy(), axis=1)

                    for s, p, l in zip(snr, pred, labels):
                        #wrt.writerow([s,p,l])
                        #wrt.writerow([p,l])
                        #p = bisect.bisect_left([0.25,0.5,0.75],p)
                        p = bisect.bisect_left(
                            [float(i / 100),
                             float(j / 100),
                             float(k / 100)], p)
                        if (p == l):
                            corr_cnt += 1
                        total_iter += 1

                acc = corr_cnt / total_iter
                if (run_max < acc):
                    run_max = acc

                print("Test done, accr = :" + str(acc))

                #print("i" + str(float(i/100)))
                #print("j" + str(float(j/100)))
                #print("k" + str(float(k/100)))
                wrt.writerow([i, j, k, acc])
    print(run_max)
    f_out.close()
import pandas as pd
import numpy as np

from sklearn.preprocessing import MinMaxScaler

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

#Load the data
data = pd.read_csv('../data/data.csv')
relevent_data = data.drop('code_size', axis=1)
test_app = 'consumer_tiffmedian'

from net import net
losses = []
net = net.to(device)
net.train()


def train_test_split(test_app):
    train_data = relevent_data[relevent_data['APP_NAME'] != test_app]
    test_data = relevent_data[relevent_data['APP_NAME'] == test_app]
    scaler = MinMaxScaler(feature_range=(0, 1)).fit(
        relevent_data[relevent_data['APP_NAME'] != test_app].iloc[:, 1:-5])
    scaled_train_predictors = scaler.transform(
        relevent_data[relevent_data['APP_NAME'] != test_app].iloc[:, 1:-5])
    train_targets = relevent_data[
        relevent_data['APP_NAME'] != test_app].iloc[:, -5:]
    scaled_train_targets = []
    for app in range(0, train_targets.shape[0], 128):
        scaled_train_targets.append(