Пример #1
0
def main():
    # 读取数据与参数
    Data = DataLoaderS(args.data, 0.6, 0.2, device, args.horizon,
                       args.seq_in_len, args.normalize)
    # 生成神经网络模型
    model = gtnet(args.gcn_true,
                  args.buildA_true,
                  args.gcn_depth,
                  args.num_nodes,
                  device,
                  dropout=args.dropout,
                  subgraph_size=args.subgraph_size,
                  node_dim=args.node_dim,
                  dilation_exponential=args.dilation_exponential,
                  conv_channels=args.conv_channels,
                  residual_channels=args.residual_channels,
                  skip_channels=args.skip_channels,
                  end_channels=args.end_channels,
                  seq_length=args.seq_in_len,
                  in_dim=args.in_dim,
                  out_dim=args.seq_out_len,
                  layers=args.layers,
                  propalpha=args.propalpha,
                  tanhalpha=args.tanhalpha,
                  layer_norm_affline=False)
    # 将生成模型加载到相应设备中
    model = model.to(device)
    # 输出模型args实例
    print(args)
    print('The recpetive field size is', model.receptive_field)
    nParams = sum([p.nelement() for p in model.parameters()])
    print('Number of model parameters is', nParams, flush=True)

    # 计算损失函数
    if args.L1Loss:
        criterion = nn.L1Loss(size_average=False).to(device)
    else:
        criterion = nn.MSELoss(size_average=False).to(device)
    # 计算预测值和真实值之差的平方的平均数
    evaluateL2 = nn.MSELoss(size_average=False).to(device)
    # 计算预测值和真实值之差的绝对值的平均数
    evaluateL1 = nn.L1Loss(size_average=False).to(device)

    best_val = 10000000
    optim = Optim(model.parameters(),
                  args.optim,
                  args.lr,
                  args.clip,
                  lr_decay=args.weight_decay)

    # 在任何时刻都可以按下Ctrl + C来提前停止训练
    try:
        print('begin training')
        # epoch为一次训练迭代次数
        for epoch in range(1, args.epochs + 1):
            epoch_start_time = time.time()
            # 计算训练函数train对于训练数据集train的误差
            train_loss = train(Data, Data.train[0], Data.train[1], model,
                               criterion, optim, args.batch_size)
            # 计算评价函数evaluate对于验证数据集valid的误差
            val_loss, val_rae, val_corr = evaluate(Data, Data.valid[0],
                                                   Data.valid[1], model,
                                                   evaluateL2, evaluateL1,
                                                   args.batch_size)
            print(
                '| end of epoch {:3d} | time: {:5.2f}s | train_loss {:5.4f} | valid rse {:5.4f} | valid rae {:5.4f} | valid corr  {:5.4f}'
                .format(epoch, (time.time() - epoch_start_time), train_loss,
                        val_loss, val_rae, val_corr),
                flush=True)
            # 保存最小损失的最优模型
            if val_loss < best_val:
                with open(args.save, 'wb') as f:
                    torch.save(model, f)
                best_val = val_loss
            # 每迭代5次输出一下误差系数
            if epoch % 5 == 0:
                test_acc, test_rae, test_corr = evaluate(
                    Data, Data.test[0], Data.test[1], model, evaluateL2,
                    evaluateL1, args.batch_size)
                print(
                    "test rse {:5.4f} | test rae {:5.4f} | test corr {:5.4f}".
                    format(test_acc, test_rae, test_corr),
                    flush=True)

    except KeyboardInterrupt:
        # 键盘按下Ctrl + C时,输出一堆‘-’
        print('-' * 89)
        print('Exiting from training early')

    # 加载保存的最优模型
    with open(args.save, 'rb') as f:
        model = torch.load(f)
    # 计算评价函数evaluate对于验证数据集valid和测试数据集test的误差
    vtest_acc, vtest_rae, vtest_corr = evaluate(Data, Data.valid[0],
                                                Data.valid[1], model,
                                                evaluateL2, evaluateL1,
                                                args.batch_size)
    test_acc, test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1],
                                             model, evaluateL2, evaluateL1,
                                             args.batch_size)
    print(
        "final test rse {:5.4f} | test rae {:5.4f} | test corr {:5.4f}".format(
            test_acc, test_rae, test_corr))
    return vtest_acc, vtest_rae, vtest_corr, test_acc, test_rae, test_corr
Пример #2
0
def main(runid):
    # torch.manual_seed(args.seed)
    # torch.backends.cudnn.deterministic = True
    # torch.backends.cudnn.benchmark = False
    # np.random.seed(args.seed)
    #load data
    device = torch.device(args.device)
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    dataloader = load_dataset(args.data, args.batch_size, args.batch_size,
                              args.batch_size)
    scaler = dataloader['scaler']

    predefined_A = load_adj(args.adj_data)
    predefined_A = torch.tensor(predefined_A) - torch.eye(args.num_nodes)
    predefined_A = predefined_A.to(device)

    # if args.load_static_feature:
    #     static_feat = load_node_feature('data/sensor_graph/location.csv')
    # else:
    #     static_feat = None

    model = gtnet(args.gcn_true,
                  args.buildA_true,
                  args.gcn_depth,
                  args.num_nodes,
                  device,
                  predefined_A=predefined_A,
                  dropout=args.dropout,
                  subgraph_size=args.subgraph_size,
                  node_dim=args.node_dim,
                  dilation_exponential=args.dilation_exponential,
                  conv_channels=args.conv_channels,
                  residual_channels=args.residual_channels,
                  skip_channels=args.skip_channels,
                  end_channels=args.end_channels,
                  seq_length=args.seq_in_len,
                  in_dim=args.in_dim,
                  out_dim=args.seq_out_len,
                  layers=args.layers,
                  propalpha=args.propalpha,
                  tanhalpha=args.tanhalpha,
                  layer_norm_affline=True)

    print(args)
    print('The recpetive field size is', model.receptive_field)
    nParams = sum([p.nelement() for p in model.parameters()])
    print('Number of model parameters is', nParams)

    engine = Trainer(model, args.learning_rate, args.weight_decay, args.clip,
                     args.step_size1, args.seq_out_len, scaler, device,
                     args.cl)

    print("start training...", flush=True)
    his_loss = []
    val_time = []
    train_time = []
    minl = 1e5
    for i in range(1, args.epochs + 1):
        train_loss = []
        train_mape = []
        train_rmse = []
        t1 = time.time()
        dataloader['train_loader'].shuffle()
        for iter, (x,
                   y) in enumerate(dataloader['train_loader'].get_iterator()):
            trainx = torch.Tensor(x).to(device)
            trainx = trainx.transpose(1, 3)
            trainy = torch.Tensor(y).to(device)
            trainy = trainy.transpose(1, 3)
            if iter % args.step_size2 == 0:
                perm = np.random.permutation(range(args.num_nodes))
            num_sub = int(args.num_nodes / args.num_split)
            for j in range(args.num_split):
                if j != args.num_split - 1:
                    id = perm[j * num_sub:(j + 1) * num_sub]
                else:
                    id = perm[j * num_sub:]
                id = torch.tensor(id).to(device)
                tx = trainx[:, :, id, :]
                ty = trainy[:, :, id, :]
                metrics = engine.train(tx, ty[:, 0, :, :], id)
                train_loss.append(metrics[0])
                train_mape.append(metrics[1])
                train_rmse.append(metrics[2])
            if iter % args.print_every == 0:
                log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}'
                print(log.format(iter, train_loss[-1], train_mape[-1],
                                 train_rmse[-1]),
                      flush=True)
        t2 = time.time()
        train_time.append(t2 - t1)
        #validation
        valid_loss = []
        valid_mape = []
        valid_rmse = []

        s1 = time.time()
        for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()):
            testx = torch.Tensor(x).to(device)
            testx = testx.transpose(1, 3)
            testy = torch.Tensor(y).to(device)
            testy = testy.transpose(1, 3)
            metrics = engine.eval(testx, testy[:, 0, :, :])
            valid_loss.append(metrics[0])
            valid_mape.append(metrics[1])
            valid_rmse.append(metrics[2])
        s2 = time.time()
        log = 'Epoch: {:03d}, Inference Time: {:.4f} secs'
        print(log.format(i, (s2 - s1)))
        val_time.append(s2 - s1)
        mtrain_loss = np.mean(train_loss)
        mtrain_mape = np.mean(train_mape)
        mtrain_rmse = np.mean(train_rmse)

        mvalid_loss = np.mean(valid_loss)
        mvalid_mape = np.mean(valid_mape)
        mvalid_rmse = np.mean(valid_rmse)
        his_loss.append(mvalid_loss)

        log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch'
        print(log.format(i, mtrain_loss, mtrain_mape, mtrain_rmse, mvalid_loss,
                         mvalid_mape, mvalid_rmse, (t2 - t1)),
              flush=True)

        if mvalid_loss < minl:
            torch.save(
                engine.model.state_dict(), args.save + "exp" +
                str(args.expid) + "_" + str(runid) + ".pth")
            minl = mvalid_loss

    print("Average Training Time: {:.4f} secs/epoch".format(
        np.mean(train_time)))
    print("Average Inference Time: {:.4f} secs".format(np.mean(val_time)))

    bestid = np.argmin(his_loss)
    engine.model.load_state_dict(
        torch.load(args.save + "exp" + str(args.expid) + "_" + str(runid) +
                   ".pth"))

    print("Training finished")
    print("The valid loss on best model is", str(round(his_loss[bestid], 4)))

    #valid data
    outputs = []
    realy = torch.Tensor(dataloader['y_val']).to(device)
    realy = realy.transpose(1, 3)[:, 0, :, :]

    for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()):
        testx = torch.Tensor(x).to(device)
        testx = testx.transpose(1, 3)
        with torch.no_grad():
            preds = engine.model(testx)
            preds = preds.transpose(1, 3)
        outputs.append(preds.squeeze())

    yhat = torch.cat(outputs, dim=0)
    yhat = yhat[:realy.size(0), ...]

    pred = scaler.inverse_transform(yhat)
    vmae, vmape, vrmse = metric(pred, realy)

    #test data
    outputs = []
    realy = torch.Tensor(dataloader['y_test']).to(device)
    realy = realy.transpose(1, 3)[:, 0, :, :]

    for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()):
        testx = torch.Tensor(x).to(device)
        testx = testx.transpose(1, 3)
        with torch.no_grad():
            preds = engine.model(testx)
            preds = preds.transpose(1, 3)
        outputs.append(preds.squeeze())

    yhat = torch.cat(outputs, dim=0)
    yhat = yhat[:realy.size(0), ...]

    mae = []
    mape = []
    rmse = []
    for i in range(args.seq_out_len):
        pred = scaler.inverse_transform(yhat[:, :, i])
        real = realy[:, :, i]
        metrics = metric(pred, real)
        log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
        print(log.format(i + 1, metrics[0], metrics[1], metrics[2]))
        mae.append(metrics[0])
        mape.append(metrics[1])
        rmse.append(metrics[2])
    return vmae, vmape, vrmse, mae, mape, rmse
Пример #3
0
def main():

    Data = DataLoaderS(args.data, 0.6, 0.2, device, args.horizon, args.seq_in_len, args.normalize)

    model = gtnet(args.gcn_true, args.buildA_true, args.gcn_depth, args.num_nodes,
                  device, dropout=args.dropout, subgraph_size=args.subgraph_size,
                  node_dim=args.node_dim, dilation_exponential=args.dilation_exponential,
                  conv_channels=args.conv_channels, residual_channels=args.residual_channels,
                  skip_channels=args.skip_channels, end_channels= args.end_channels,
                  seq_length=args.seq_in_len, in_dim=args.in_dim, out_dim=args.seq_out_len,
                  layers=args.layers, propalpha=args.propalpha, tanhalpha=args.tanhalpha, layer_norm_affline=False)
    model = model.to(device)

    print(args)
    print('The recpetive field size is', model.receptive_field)
    nParams = sum([p.nelement() for p in model.parameters()])
    print('Number of model parameters is', nParams, flush=True)

    if args.L1Loss:
        criterion = nn.L1Loss(size_average=False).to(device)
    else:
        criterion = nn.MSELoss(size_average=False).to(device)
    evaluateL2 = nn.MSELoss(size_average=False).to(device)
    evaluateL1 = nn.L1Loss(size_average=False).to(device)


    best_val = 10000000
    optim = Optim(
        model.parameters(), args.optim, args.lr, args.clip, lr_decay=args.weight_decay
    )

    # At any point you can hit Ctrl + C to break out of training early.
    try:
        print('begin training')
        for epoch in range(1, args.epochs + 1):
            epoch_start_time = time.time()
            train_loss = train(Data, Data.train[0], Data.train[1], model, criterion, optim, args.batch_size)
            val_loss, val_rae, val_corr = evaluate(Data, Data.valid[0], Data.valid[1], model, evaluateL2, evaluateL1,
                                               args.batch_size)
            print(
                '| end of epoch {:3d} | time: {:5.2f}s | train_loss {:5.4f} | valid rse {:5.4f} | valid rae {:5.4f} | valid corr  {:5.4f}'.format(
                    epoch, (time.time() - epoch_start_time), train_loss, val_loss, val_rae, val_corr), flush=True)
            # Save the model if the validation loss is the best we've seen so far.

            if val_loss < best_val:
                with open(args.save, 'wb') as f:
                    torch.save(model, f)
                best_val = val_loss
            if epoch % 5 == 0:
                test_acc, test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1], model, evaluateL2, evaluateL1,
                                                     args.batch_size)
                print("test rse {:5.4f} | test rae {:5.4f} | test corr {:5.4f}".format(test_acc, test_rae, test_corr), flush=True)

    except KeyboardInterrupt:
        print('-' * 89)
        print('Exiting from training early')

    # Load the best saved model.
    with open(args.save, 'rb') as f:
        model = torch.load(f)

    vtest_acc, vtest_rae, vtest_corr = evaluate(Data, Data.valid[0], Data.valid[1], model, evaluateL2, evaluateL1,
                                         args.batch_size)
    test_acc, test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1], model, evaluateL2, evaluateL1,
                                         args.batch_size)
    print("final test rse {:5.4f} | test rae {:5.4f} | test corr {:5.4f}".format(test_acc, test_rae, test_corr))
    return vtest_acc, vtest_rae, vtest_corr, test_acc, test_rae, test_corr