Пример #1
0
                    sampler=InfiniteSampler(len(dataset_train)),
                    num_workers=args.n_threads))
print(len(dataset_train))
model = PConvUNet(input_guides=1 if use_depth else 0).to(device)

if args.finetune:
    lr = args.lr_finetune
    model.freeze_enc_bn = True
else:
    lr = args.lr

start_iter = 0
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
                                    model.parameters()),
                             lr=lr)
criterion = InpaintingLoss(VGG16FeatureExtractor()).to(device)

if args.resume:
    start_iter = load_ckpt(args.resume, [('model', model)],
                           [('optimizer', optimizer)])
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr
    print('Starting from iter ', start_iter)

for i in tqdm(range(start_iter, args.max_iter)):
    model.train()

    image, mask, gt = [x.to(device) for x in next(iterator_train)]
    if args.mask_root is not None:
        guide = image[:, 3:4, :, :]
        image = image[:, 0:3, :, :]
Пример #2
0
loader_val = data.DataLoader(dataset_val,
                             batch_size=mini_batch,
                             sampler=RandomSampler(data_source=dataset_val),
                             num_workers=4)

loaders = {"train": loader_train, "valid": loader_val}

print('model')

# model, criterion, optimizer, scheduler
#model = vgg13().cuda()
#model = resnet18(pretrained=False, progress=True).cuda()
#model = inception_v3().cuda()
model = resnext101_32x8d().cuda()
#criterion = CustomCriterion().cuda()
criterion = InpaintingLoss(VGG16FeatureExtractor()).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=0.0)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
    optimizer,
    milestones=[3, 6, 9, 12, 18, 24, 30, 40, 50, 60, 70, 80, 90],
    gamma=.5)

print('training')

# model training
runner = dl.SupervisedRunner()
logdir = './logdir'
runner.train(model=model,
             criterion=criterion,
             optimizer=optimizer,
             scheduler=scheduler,