def egress_src_dest_pairs_policy(self): policies = [] for src_dest_pair in self.nib.get_egress_src_dest_pairs(): (src_ip, dst_ip) = src_dest_pair # Convert dst_ip to its real form. First find out what the egress switch actually is: for ap in self.nib.alternate_paths(): if NetUtils.ip_in_network(dst_ip, ap["ithaca"]): switch = "ithaca" imaginary_net = ap["ithaca"] elif NetUtils.ip_in_network(dst_ip, ap["nyc"]): switch = "nyc" imaginary_net = ap["nyc"] real_net = self.nib.actual_net_for(switch) dst_host = NetUtils.host_of_ip(dst_ip, imaginary_net) new_dest_ip = NetUtils.ip_for_network(real_net, dst_host) # If it's not in the ARP cache, it already has an ARP request on the way so ignore it for now. if self.nib.learned_ip(new_dest_ip): direct_net_port = self.nib.port_for_ip(new_dest_ip) new_src_ip = self.nib.translate_alternate_net(src_ip) output_actions = SetIP4Src(new_src_ip) >> SetIP4Dst(new_dest_ip) >> Send(direct_net_port) policies.append( Filter(SwitchEq(self.nib.switch_to_dpid(switch)) & Policies.is_ip_from_to(src_ip, dst_ip)) >> output_actions ) return Union(policies)
def coscin_net_for(self, src_ip): for side in [ "ithaca", "nyc" ]: if NetUtils.ip_in_network(src_ip, self.actual_net_for(side)): return self.actual_net_for(side) for ap in self.alternate_paths(): if NetUtils.ip_in_network(src_ip, ap[side]): return ap[side] return None
def coscin_net_for(self, src_ip): for side in ["ithaca", "nyc"]: if NetUtils.ip_in_network(src_ip, self.actual_net_for(side)): return self.actual_net_for(side) for ap in self.alternate_paths(): if NetUtils.ip_in_network(src_ip, ap[side]): return ap[side] return None
def ip_in_coscin_network(self, dst_ip): if NetUtils.ip_in_network(dst_ip, self.actual_net_for("ithaca")): return True if NetUtils.ip_in_network(dst_ip, self.actual_net_for("nyc")): return True for ap in self.alternate_paths(): if NetUtils.ip_in_network(dst_ip, ap["ithaca"]) or NetUtils.ip_in_network(dst_ip, ap["nyc"]): return True return False
def packet_in(self, dpid, port, payload): p_eth = NetUtils.packet(payload, 'ethernet') if p_eth.ethertype != 0x0806: return # Handle ARP requests. p_arp = NetUtils.packet(payload, 'arp') src_ip = p_arp.src_ip dst_ip = p_arp.dst_ip switch = self.nib.dpid_to_switch(dpid) if p_arp.opcode == arp.ARP_REQUEST: preferred_path = self.nib.get_preferred_path() # If the request is for a host in the net we're already in, just broadcast it. The host # itself will answer. if NetUtils.ip_in_network(src_ip, self.nib.actual_net_for(switch)) and \ NetUtils.ip_in_network(dst_ip, self.nib.actual_net_for(switch)): real_dest_ip = None else: # It's an imaginary host on one of the alternate paths real_dest_ip = self.nib.translate_alternate_net(dst_ip) if real_dest_ip == None: logging.info("Flooding ARP Request") self.main_app.flood(switch, port, payload) elif self.nib.learned_ip(real_dest_ip): real_dest_mac = self.nib.mac_for_ip(real_dest_ip) self.arp_reply(switch, port, p_eth.src, src_ip, real_dest_mac, dst_ip) else: # Send an ARP request to all ports, then just stay out of the way. If the host is up # on an unlearned port, it'll send a response, and that'll trigger learning. Then # when the NEXT ARP request for this address is received (it'll get retried a bunch of # times in practice), the reply can be generated from the ARP cache. # It doesn't matter so much where the ARP reply goes, because this switch will pick it up. switch_net = self.nib.actual_net_for(switch) # TODO: 250 will work as a host on subnets with a /24, but not any higher. src_ip = NetUtils.ip_for_network(switch_net, 250) self.main_app.send_arp_request(switch, src_ip, real_dest_ip) # We don't do anything special to ARP replies, just forward them onto their destination # unidirectionally # TODO: Can't this be handled by L2Switch, since it's bound for a real Mac? elif p_arp.opcode == arp.ARP_REPLY: # We ignore the text of ARP replies bound for us. We just used them for learning the port. if p_eth.dst == self.main_app.BOGUS_MAC: pass # The destination port was definitely learned because that's where the request originated elif not self.nib.seen_mac(p_eth.dst): logging.error("Ooops! ARP reply bound for a destination we don't know") return elif self.nib.switch_for_mac(p_eth.dst) != switch: logging.error("Ooops! ARP reply is destined for a different network. Can't happen.") return else: direct_net_port = self.nib.port_for_mac(p_eth.dst) output_actions = [Output(Physical(direct_net_port))] self.main_app.pkt_out(dpid, payload, output_actions)
def ip_in_coscin_network(self, dst_ip): if NetUtils.ip_in_network(dst_ip, self.actual_net_for("ithaca")): return True if NetUtils.ip_in_network(dst_ip, self.actual_net_for("nyc")): return True for ap in self.alternate_paths(): if NetUtils.ip_in_network(dst_ip, ap["ithaca"]) or NetUtils.ip_in_network( dst_ip, ap["nyc"]): return True return False
def add_outgoing_dynamic_flow(self, msg): dp = msg.datapath switch = self.nib.switch_for_dp(dp) ofproto = dp.ofproto parser = dp.ofproto_parser in_port = msg.match['in_port'] pkt = packet.Packet(msg.data) eth = pkt.get_protocols(ethernet.ethernet)[0] ip = pkt.get_protocols(ipv4.ipv4)[0] src_ip = ip.src dst_ip = ip.dst actions = [] # We only add IP rewriting for Coscin packets. All non-coscin packets will get a flow rule, but no # IP rewriting. if self.nib.ip_rewriting() and self.nib.ip_in_coscin_network(dst_ip): opposite_switch = self.nib.opposite_switch(switch) # If this is bound for the "virtual" network on the other side, pick the path and rewrite # the destination IP's if NetUtils.ip_in_network( dst_ip, self.nib.actual_net_for(opposite_switch)): new_src_ip = self.nib.translate_ip( src_ip, self.nib.preferred_net(switch)) actions.append(parser.OFPActionSetField(ipv4_src=new_src_ip)) new_dst_ip = self.nib.translate_ip( dst_ip, self.nib.preferred_net(opposite_switch)) actions.append(parser.OFPActionSetField(ipv4_dst=new_dst_ip)) # If it's trying to communicate with the router on the same side (like ping), just let it # through elif NetUtils.ip_in_network(dst_ip, self.nib.actual_net_for(switch)): pass else: # If it's a direct route (e.g 56.100 -> 157.200), we only need to renumber the source. # But we have to select the right imaginary net so the path is "straight" new_src_ip = self.nib.translate_ip( src_ip, self.nib.opposite_net_for(dst_ip)) actions.append(parser.OFPActionSetField(ipv4_src=new_src_ip)) # No matter what, our rule will always send the packet to the router actions.append( parser.OFPActionOutput(self.nib.router_port_for_switch(switch))) # Only TCP and UDP packets are handled by installing rules in custom pipleine hash table. # (But we had to compute the actios regardless because they'll be used in a Packet Out) if ip.proto == in_proto.IPPROTO_TCP or ip.proto == in_proto.IPPROTO_UDP: self.write_table_2_rule(switch, dp, ip, pkt, actions, "outgoing") return actions
def opposite_net_for(self, src_ip): for ap in self.alternate_paths(): for side in [ "ithaca", "nyc" ]: opposite_side = self.opposite_switch(side) if NetUtils.ip_in_network(src_ip, ap[opposite_side]): return ap[side] return None
def opposite_net_for(self, src_ip): for ap in self.alternate_paths(): for side in ["ithaca", "nyc"]: opposite_side = self.opposite_switch(side) if NetUtils.ip_in_network(src_ip, ap[opposite_side]): return ap[side] return None
def add_outgoing_dynamic_flow(self, msg): dp = msg.datapath switch = self.nib.switch_for_dp(dp) ofproto = dp.ofproto parser = dp.ofproto_parser in_port = msg.match['in_port'] pkt = packet.Packet(msg.data) eth = pkt.get_protocols(ethernet.ethernet)[0] ip = pkt.get_protocols(ipv4.ipv4)[0] src_ip = ip.src dst_ip = ip.dst actions = [ ] # We only add IP rewriting for Coscin packets. All non-coscin packets will get a flow rule, but no # IP rewriting. if self.nib.ip_rewriting() and self.nib.ip_in_coscin_network(dst_ip): opposite_switch = self.nib.opposite_switch(switch) # If this is bound for the "virtual" network on the other side, pick the path and rewrite # the destination IP's if NetUtils.ip_in_network(dst_ip, self.nib.actual_net_for(opposite_switch)): new_src_ip = self.nib.translate_ip(src_ip, self.nib.preferred_net(switch)) actions.append( parser.OFPActionSetField( ipv4_src = new_src_ip ) ) new_dst_ip = self.nib.translate_ip(dst_ip, self.nib.preferred_net(opposite_switch)) actions.append( parser.OFPActionSetField( ipv4_dst = new_dst_ip ) ) # If it's trying to communicate with the router on the same side (like ping), just let it # through elif NetUtils.ip_in_network(dst_ip, self.nib.actual_net_for(switch)): pass else: # If it's a direct route (e.g 56.100 -> 157.200), we only need to renumber the source. # But we have to select the right imaginary net so the path is "straight" new_src_ip = self.nib.translate_ip(src_ip, self.nib.opposite_net_for(dst_ip)) actions.append( parser.OFPActionSetField( ipv4_src = new_src_ip ) ) # No matter what, our rule will always send the packet to the router actions.append(parser.OFPActionOutput(self.nib.router_port_for_switch(switch))) # Only TCP and UDP packets are handled by installing rules in custom pipleine hash table. # (But we had to compute the actios regardless because they'll be used in a Packet Out) if ip.proto == in_proto.IPPROTO_TCP or ip.proto == in_proto.IPPROTO_UDP: self.write_table_2_rule(switch, dp, ip, pkt, actions, "outgoing" ) return actions
def packet_in(self, dpid, port, payload): p_eth = NetUtils.packet(payload, "ethernet") if p_eth.ethertype != 0x0800: return p_ip = NetUtils.packet(payload, "ipv4") src_ip = p_ip.src dst_ip = p_ip.dst switch = self.nib.dpid_to_switch(dpid) # If we haven't seen this source, dest pair yet, add it, and the rule with it. # Which list we put it in depends on whether we're at the ingress or egress switch if self.nib.at_ingress_switch(switch, port): # TODO: If this packet is bound for hosts outside the CoSciN network, in production just forward them, # For now, just drop them. if not self.nib.ip_in_coscin_network(dst_ip): logging.info("Internet-bound packet dropped in this test network") return # It's possible that this is an intra-network packet even though the rule should 've been installed # to handle such packets directly. send_along_direct_path will handle it below. elif NetUtils.ip_in_network(dst_ip, self.nib.actual_net_for(switch)): pass elif not self.nib.seen_src_dest_pair_at_ingress(src_ip, dst_ip): self.nib.add_ingress_src_dest_pair(src_ip, dst_ip) self.nib.set_dirty() elif self.nib.at_egress_switch(switch, port): if not self.nib.seen_src_dest_pair_at_egress(src_ip, dst_ip): self.nib.add_egress_src_dest_pair(src_ip, dst_ip) self.nib.set_dirty() # If we have seen it, the rule should've taken care of the next packets, but it might # not be in effect yet so we handle it manually opposite_switch = self.nib.opposite_switch(switch) if NetUtils.ip_in_network(dst_ip, self.nib.actual_net_for(opposite_switch)): self.send_along_preferred_path(switch, src_ip, dst_ip, payload) elif self.nib.at_ingress_switch(switch, port): if NetUtils.ip_in_network(dst_ip, self.nib.actual_net_for(switch)): self.send_to_host_without_rewrite(switch, src_ip, dst_ip, payload) else: self.send_along_direct_path(switch, src_ip, dst_ip, payload) elif self.nib.at_egress_switch(switch, port): self.send_to_host(switch, src_ip, dst_ip, payload)
def src_dest_pair_not_learned(self, dest_net): # Given a destination net, find all learned src, dest pairs that match it and return # a clause that doesn't match any of them. preds = [] for src_dest_pair in self.nib.get_egress_src_dest_pairs(): (src_ip, dst_ip) = src_dest_pair if NetUtils.ip_in_network(dst_ip, dest_net): preds.append(IP4SrcEq(src_ip) & IP4DstEq(dst_ip)) if not preds: return true else: return Not(Or(preds))
def destination_not_known_host_on_net(self, host_ip, dest_net): # Given an IP, find all src_dest pairs we've seen for this src, filter the dests down to # those on the dest_net, and return a clause that doesn't match any of them preds = [] for src_dest_pair in self.nib.get_ingress_src_dest_pairs(): (src_ip, dst_ip) = src_dest_pair if src_ip == host_ip and NetUtils.ip_in_network(dst_ip, dest_net): preds.append(IP4DstEq(dst_ip)) if not preds: return true else: return Not(Or(preds))
def send_along_direct_path(self, switch, src_ip, dst_ip, payload): opposite_switch = self.nib.opposite_switch(switch) for ap in self.nib.alternate_paths(): if NetUtils.ip_in_network(dst_ip, ap[opposite_switch]): src_net = ap[switch] src_host = NetUtils.host_of_ip(src_ip, self.nib.actual_net_for(switch)) # Translate this to the direct path IP new_src = NetUtils.ip_for_network(src_net, src_host) output_actions = [SetIP4Src(new_src), Output(Physical(self.nib.router_port_for_switch(switch)))] dpid = self.nib.switch_to_dpid(switch) self.main_app.pkt_out(dpid, payload, output_actions)
def ingress_src_dest_pairs_policy(self): policies = [] for src_dest_pair in self.nib.get_ingress_src_dest_pairs(): (src_ip, dst_ip) = src_dest_pair switch = self.nib.switch_for_ip(src_ip) dpid = self.nib.switch_to_dpid(switch) port = self.nib.port_for_ip(src_ip) src_host = NetUtils.host_of_ip(src_ip, self.nib.actual_net_for(switch)) # If this is going to the preferred network, write a rule choosing the # correct route here. opposite_switch = self.nib.opposite_switch(switch) if NetUtils.ip_in_network(dst_ip, self.nib.actual_net_for(opposite_switch)): # Get host from src_ip src_pref_net = self.nib.preferred_net(switch) new_src = NetUtils.ip_for_network(src_pref_net, src_host) dest_host = NetUtils.host_of_ip(dst_ip, self.nib.actual_net_for(opposite_switch)) new_dest = NetUtils.ip_for_network(self.nib.preferred_net(opposite_switch), dest_host) router_port = self.nib.router_port_for_switch(switch) output_actions = SetIP4Src(new_src) >> SetIP4Dst(new_dest) >> Send(router_port) policies.append( Filter(Policies.at_switch_port(dpid, port) & Policies.is_ip_from_to(src_ip, dst_ip)) >> output_actions ) else: # It's a direct path. Find the path first. for ap in self.nib.alternate_paths(): if NetUtils.ip_in_network(dst_ip, ap[opposite_switch]): alternate_path = ap new_src = NetUtils.ip_for_network(alternate_path[switch], src_host) router_port = self.nib.router_port_for_switch(switch) output_actions = SetIP4Src(new_src) >> Send(router_port) policies.append( Filter(Policies.at_switch_port(dpid, port) & Policies.is_ip_from_to(src_ip, dst_ip)) >> output_actions ) return Union(policies)
def add_incoming_dynamic_flow(self, msg): dp = msg.datapath switch = self.nib.switch_for_dp(dp) ofproto = dp.ofproto parser = dp.ofproto_parser pkt = packet.Packet(msg.data) eth = pkt.get_protocols(ethernet.ethernet)[0] ip = pkt.get_protocols(ipv4.ipv4)[0] src_ip = ip.src dst_ip = ip.dst # If the destination IP is in the real network (ip_in_network returns true), # then the other side of the network is not properly rewriting the destination. # or the packet is coming from the non-Coscin Internet. Just leave those IP's alone (we assume # there's nothing crazy like the source using a virtual address here.) actions = [] if self.nib.ip_rewriting() and not NetUtils.ip_in_network( dst_ip, self.nib.actual_net_for(switch)): opposite_switch = self.nib.opposite_switch(switch) # Check the source IP. It should be coming from the same path subnets as the detination. If it's not, # it's some arbitrary Internet host trying to contact the imaginary net. Drop the packet like a hot potato. new_src_ip = self.nib.translate_ip( src_ip, self.nib.actual_net_for(opposite_switch)) if new_src_ip == None: return [] actions.append(parser.OFPActionSetField(ipv4_src=new_src_ip)) # The destination IP is always on one of the imaginary nets, or else it wouldn't have been delivered # to this switch at all. new_dst_ip = self.nib.translate_ip(dst_ip, self.nib.actual_net_for(switch)) actions.append(parser.OFPActionSetField(ipv4_dst=new_dst_ip)) # The destination mac in the packet is guaranteed OK because the router placed it there as a result # of its ARP cache. However, that doesn't necessarily mean we have learned that port yet, so act like # an L2 switch. But in that case, don't install the rule because we don't want to just flood the switch # everytime it happens. output_p = self.nib.port_for_mac(eth.dst) if output_p == None: output_p = ofproto.OFPP_FLOOD actions.append(parser.OFPActionOutput(output_p)) if (ip.proto == in_proto.IPPROTO_TCP or ip.proto == in_proto.IPPROTO_UDP) and output_p != ofproto.OFPP_FLOOD: self.write_table_2_rule(switch, dp, ip, pkt, actions, "incoming") return actions
def translate_alternate_net(self, dst_ip): # First find out which side (ithaca or nyc) it's on found_side = None for ap in self.alternate_paths(): for side in ["ithaca", "nyc"]: if NetUtils.ip_in_network(dst_ip, ap[side]): found_side = side imaginary_net = ap[side] if side == None: logging.error("Ooops. Got an ARP request for a net we don't know about. Oh well.") return False else: host = NetUtils.host_of_ip(dst_ip, imaginary_net) return NetUtils.ip_for_network(self.actual_net_for(found_side), host)
def add_incoming_dynamic_flow(self, msg): dp = msg.datapath switch = self.nib.switch_for_dp(dp) ofproto = dp.ofproto parser = dp.ofproto_parser pkt = packet.Packet(msg.data) eth = pkt.get_protocols(ethernet.ethernet)[0] ip = pkt.get_protocols(ipv4.ipv4)[0] src_ip = ip.src dst_ip = ip.dst # If the destination IP is in the real network (ip_in_network returns true), # then the other side of the network is not properly rewriting the destination. # or the packet is coming from the non-Coscin Internet. Just leave those IP's alone (we assume # there's nothing crazy like the source using a virtual address here.) actions = [] if self.nib.ip_rewriting() and not NetUtils.ip_in_network(dst_ip, self.nib.actual_net_for(switch)): opposite_switch = self.nib.opposite_switch(switch) # Check the source IP. It should be coming from the same path subnets as the detination. If it's not, # it's some arbitrary Internet host trying to contact the imaginary net. Drop the packet like a hot potato. new_src_ip = self.nib.translate_ip(src_ip, self.nib.actual_net_for(opposite_switch)) if new_src_ip == None: return [] actions.append( parser.OFPActionSetField(ipv4_src=new_src_ip) ) # The destination IP is always on one of the imaginary nets, or else it wouldn't have been delivered # to this switch at all. new_dst_ip = self.nib.translate_ip(dst_ip, self.nib.actual_net_for(switch)) actions.append( parser.OFPActionSetField(ipv4_dst=new_dst_ip) ) # The destination mac in the packet is guaranteed OK because the router placed it there as a result # of its ARP cache. However, that doesn't necessarily mean we have learned that port yet, so act like # an L2 switch. But in that case, don't install the rule because we don't want to just flood the switch # everytime it happens. output_p = self.nib.port_for_mac(eth.dst) if output_p == None: output_p = ofproto.OFPP_FLOOD actions.append(parser.OFPActionOutput(output_p)) if (ip.proto == in_proto.IPPROTO_TCP or ip.proto == in_proto.IPPROTO_UDP) and output_p != ofproto.OFPP_FLOOD: self.write_table_2_rule(switch, dp, ip, pkt, actions, "incoming" ) return actions
def send_to_host(self, switch, src_ip, dst_ip, payload): # Convert dst_ip to its real form. First find out what the egress switch actually is: for ap in self.nib.alternate_paths(): if NetUtils.ip_in_network(dst_ip, ap[switch]): imaginary_net = ap[switch] real_net = self.nib.actual_net_for(switch) dst_host = NetUtils.host_of_ip(dst_ip, imaginary_net) new_dest_ip = NetUtils.ip_for_network(real_net, dst_host) # If we don't know the port for this address (which might happen if the # IP is on this network, but the host isn't up or doesn't exist) there's not # much we can do with this packet. Send an ARP request and hope the # original packet gets retransmitted (which is normally the case) if not self.nib.learned_ip(new_dest_ip): src_ip = NetUtils.ip_for_network(real_net, 250) self.main_app.send_arp_request(switch, src_ip, new_dest_ip) else: direct_net_port = self.nib.port_for_ip(new_dest_ip) # We also need to translate the alternately-numbered net to a real one. Otherwise the # host (which only knows real networks) may not know what to do with it. new_src_ip = self.nib.translate_alternate_net(src_ip) output_actions = [SetIP4Src(new_src_ip), SetIP4Dst(new_dest_ip), Output(Physical(direct_net_port))] dpid = self.nib.switch_to_dpid(switch) self.main_app.pkt_out(dpid, payload, output_actions)
def subnet_for(self, ip): for sn in self.subnets: if NetUtils.ip_in_network(ip, sn.subnet_cidr): return sn return None