def compute_flow_and_disp(save_path, data_path, model_path_disp, model_path_flow): if not os.path.exists(save_path): os.makedirs(save_path) file_list = sorted(os.listdir(data_path + 'image_2')) for i in range(len(file_list)): import netdef_slim as nd img_t0_L = data_path + 'image_2/' + file_list[i] img_t0_R = data_path + 'image_3/' + file_list[i] dispnet_controller = nd.load_module(model_path_disp + 'controller.py').Controller() data = dispnet_controller.net_actions(net_dir=model_path_disp).eval( img_t0_L, img_t0_R) disp = data['disp.L'][0, 0, :, :] writeFloat(save_path + file_list[i] + '.disp.L.float3', disp) flownet_controller = nd.load_module(model_path_flow + 'controller.py').Controller() if i < len(file_list) - 1: img_t1_L = data_path + 'image_2/' + file_list[i + 1] flow_fwd = flownet_controller.net_actions( net_dir=model_path_flow).eval(img_t0_L, img_t1_L) for key, value in flow_fwd.items(): if 'flow' in key: writeFlow(save_path + file_list[i] + '.' + key + '.flo', value[0, :, :, :].transpose(1, 2, 0)) else: writeFloat( save_path + file_list[i] + '.' + key + '.float3', value[0, :, :, :].transpose(1, 2, 0)) flow_bwd = flownet_controller.net_actions( net_dir=model_path_flow).eval(img_t1_L, img_t0_L) for key, value in flow_bwd.items(): if 'flow' in key: writeFlow( save_path + file_list[i] + '.' + key.replace('fwd', 'bwd') + '.flo', value[0, :, :, :].transpose(1, 2, 0)) else: writeFloat( save_path + file_list[i] + '.' + key.replace('fwd', 'bwd') + '.float3', value[0, :, :, :].transpose(1, 2, 0))
def __init__(self, path=None, gpu_id=0, quiet=False): if path is None: path = self.base_path self._gpu_id = gpu_id self._path = path self._quiet = quiet parts = list(os.path.normpath(self._path).split('/')) self._name = parts[-1] self._train_dir = self.path('training') self._scratch_dir = 'scratch/%s' % uuid.uuid4() self._scratch_log_file = self._scratch_dir + '/log.txt' self._net_config_file = self.path('config.py') os.environ['NETDEF_QUIET'] = str(quiet) nd.set_quiet(quiet) nd.load_module(self._net_config_file)
def __init__(self): c = nd.load_module( '/home/netdef/netdef_models/DispNet3/css/controller.py' ).Controller() self.disp_net = c.net_actions(net_dir=c.base_path) self.bridge = CvBridge() self.images_queue = [] self.disparity_image_publisher = rospy.Publisher('/nn/debug', Image) self.disparity_publisher = rospy.Publisher('/nn/depth', DisparityImage) self.right_camera_info_subscriber = rospy.Subscriber( '/camera/infra2/camera_info', CameraInfo, self.on_camera_info_received) self.right_camera_info_publisher = rospy.Publisher( '/camera/infra2/modified_camera_info', CameraInfo)
def __init__(self, net_dir, save_snapshots=True, save_summaries=True): self._check_evo_manager_init() self.net = nd.load_module(os.path.join(net_dir, 'net.py')) self.net_dir = net_dir height = 480 width = 640 tf.reset_default_graph() last_evo, current_evo = nd.evo_manager.get_status() self.env = self.net.get_env() print('Evolution: ' + last_evo.path()) self.eval_out = self.env.make_eval_graph( width=width, height=height, ) self.session = self._create_session() self.trainer = SimpleTrainer(session=self.session, train_dir=last_evo.path()) self.session.run(tf.global_variables_initializer()) ignore_vars = [] if len(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="copy")) > 0: ignore_vars = [ tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="copy")[0] ] state = last_evo.last_state() self.trainer.load_checkpoint(state.path(), ignore_vars=ignore_vars) placeholders = tf.get_collection('placeholders') self.img0 = placeholders[0] self.img1 = placeholders[1]
def __init__(self, path=None, net_actions=NetActions): if path is not None: self.base_path = path nd.load_module(os.path.join(self.base_path, 'config.py')) self.net_actions = net_actions
def __init__(self, net_dir, save_snapshots=True, save_summaries=True): self._check_evo_manager_init() self.net = nd.load_module(os.path.join(net_dir, 'net.py')) self.net_dir = net_dir
im = cv2.imread(im_paths[0])# HxWxC im_h, im_w, im_c = im.shape x0,y0,w,h = youtube_to_rec(labels[0],im_h,im_w) init_rbox = [x0,y0,w,h] #[cx, cy], [w, h] = rect_2_cxy_wh(init_rbox) #target_pos, target_sz = np.array([cx, cy]), np.array([w, h]) #state = SiamRPN_init(im, target_pos, target_sz, net) # tracker init #target_pos, target_sz = np.array([cx, cy]), np.array([w, h]) cv2.rectangle(im, (x0,y0), (x0+w, y0+h), (0, 255, 0), 2) warped_images = [] c = nd.load_module('/home/jianingq/netdef_models/FlowNetH/Pred-Merged-SS/controller.py').Controller() for i in range(0,2): c_net = c.net_actions(net_dir='/home/jianingq/netdef_models/FlowNetH/Pred-Merged-SS') im1 = im_paths[i] im2 = im_paths[i+1] if i == 0: eval_out, session = c_net.init_eval(im2, im1) out = c_net.simple_eval(eval_out, session, im2, im1) for k,v in out.items(): if(k =='flow[0][1].fwd'): flow_data.append(v[0,:,:,:].transpose(1,2,0)) elif(k == 'iul_entropy[0][1].fwd'): entropy_data.append(v[0,:,:,:].transpose(1,2,0)) if(k == 'iul_scale[0][1].fwd'):