def __init__(self): super(CarlaFloNet, self).__init__() self.featnet = FeatNet() # self.occnet = OccNet() self.flownet = FlowNet() # self.viewnet = ViewNet() # self.embnet2D = EmbNet2D() # self.embnet3D = EmbNet3D() torch.set_default_tensor_type('torch.cuda.FloatTensor') torch.autograd.set_detect_anomaly(True)
def __init__(self, config): super(MujocoOfflineMetric, self).__init__() self.config = config if self.config.do_feat: print('------- adding featnet --------') self.featnet = FeatNet(self.config) if self.config.do_occ: print('------- adding occnet ---------') self.occnet = OccNet(self.config) if self.config.do_view: print('------- adding viewnet --------') self.viewnet = ViewNet(self.config) # coordinate range self.coord_cam_front = Coord(-0.5, 0.5, -0.5, 0.5, 0.2, 1.2, 0.0, -0.4) self.coord_mem = Coord(-0.5, 0.5, -0.5, 0.5, -0.5, 0.5, 0.0, -0.4) MH, MW, MD = self.config.Y, self.config.X, self.config.Z MH2, MW2, MD2 = int(MH / 2), int(MW / 2), int(MD / 2) # voxel size mem_protos = VoxProto([MH, MW, MD]) halfmem_protos = VoxProto([MH2, MW2, MD2]) #combine self.mem_coord_cams = VoxCoord(self.coord_cam_front, mem_protos) self.mem_coord_Rs = VoxCoord(self.coord_mem, mem_protos) self.halfmem_coord_cams = VoxCoord(self.coord_cam_front, halfmem_protos) self.halfmem_coord_Rs = VoxCoord(self.coord_mem, halfmem_protos) self.feat_mem_coord_cams = None #self.halfmem_coord_Rs self.feat_mem_coord_Rs = None self.is_learned_cluster_centers = True self.cluster_name_to_id = dict() self.cluster_id_to_name = dict() self.num_clusters = 0 self.max_clusters = self.config.max_clusters self.embeddings_shape = [self.config.feat_dim, MH2, MW2, MD2] if self.config.is_refine_net: self.embeddings_shape = [self.config.feat_dim, 16, 16, 16] self.embedding_dim = self.embeddings_shape[0] * self.embeddings_shape[ 1] * self.embeddings_shape[2] * self.embeddings_shape[3] self.embeddings = torch.nn.Embedding(self.max_clusters, self.embedding_dim) use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") self.embeddings.to(device=device) if self.config.is_refine_net: self.object_refine_model = EmbeddingGenerator3D( self.config.feat_dim, en_channel=self.config.feat_dim)
def __init__(self): super(CarlaStaNet, self).__init__() if hyp.do_feat: self.featnet = FeatNet() if hyp.do_occ: self.occnet = OccNet() if hyp.do_view: self.viewnet = ViewNet() if hyp.do_emb2D: self.embnet2D = EmbNet2D() if hyp.do_emb3D: self.embnet3D = EmbNet3D()
def __init__(self, config): super(MujocoOffline, self).__init__() self.config = config if self.config.do_feat: print('------- adding featnet --------') self.featnet = FeatNet(self.config) if self.config.do_occ: print('------- adding occnet ---------') self.occnet = OccNet(self.config) if self.config.do_view: print('------- adding viewnet --------') self.viewnet = ViewNet(self.config) if self.config.do_det: print('------- adding detnet ---------') self.detnet = DetNet(self.config) # coordinate range self.coord_cam_front = Coord(-0.5, 0.5, -0.5, 0.5, 0.2, 1.2, 0.0, -0.4) self.coord_mem = Coord(-0.5, 0.5, -0.5, 0.5, -0.5, 0.5, 0.0, -0.4) MH, MW, MD = self.config.Y, self.config.X, self.config.Z MH2, MW2, MD2 = int(MH / 2), int(MW / 2), int(MD / 2) # voxel size mem_protos = VoxProto([MH, MW, MD]) halfmem_protos = VoxProto([MH2, MW2, MD2]) #combine self.mem_coord_cams = VoxCoord(self.coord_cam_front, mem_protos) self.mem_coord_Rs = VoxCoord(self.coord_mem, mem_protos) self.halfmem_coord_cams = VoxCoord(self.coord_cam_front, halfmem_protos) self.halfmem_coord_Rs = VoxCoord(self.coord_mem, halfmem_protos) self.feat_mem_coord_cams = None #self.halfmem_coord_Rs self.feat_mem_coord_Rs = None self.is_learned_cluster_centers = False
def __init__(self): super(ClevrStaNet, self).__init__() self.device = "cuda" self.list_of_classes = [] self.minclasses = 3 # self.mbr = cross_corr.meshgrid_based_rotation(hyp.BOX_SIZE,hyp.BOX_SIZE,hyp.BOX_SIZE) self.info_dict = defaultdict(lambda: []) self.embed_list_style = defaultdict(lambda: []) self.embed_list_content = defaultdict(lambda: []) if hyp.do_feat: self.featnet = FeatNet() if hyp.do_occ or (hyp.remove_air and hyp.aug_det): self.occnet = OccNet() if hyp.do_view: self.viewnet = ViewNet() if hyp.do_render: self.rendernet = RenderNet() if hyp.do_munit: if hyp.simple_adaingen: self.munitnet = MunitNet_Simple().cuda() else: self.munitnet = MunitNet().cuda() self.is_empty_occ_generated = False self.avg_ap = [] self.avg_precision = [] self.tp_style = 0 self.all_style = 0 self.tp_content = 0 self.all_content = 0 self.max_content = None self.min_content = None self.max_style = None self.min_style = None self.styles_prediction = defaultdict(lambda: []) self.content_prediction = defaultdict(lambda: [])
def __init__(self): """The idea is here the featnet would be frozen, and using some X number of images it will form the features for the object, which will be used to get the closeby embeddings to learn metric learning """ super(TouchEmbed2D, self).__init__() if hyp.do_feat: print('using the visual feat net to generate visual feature tensor') self.featnet = FeatNet(input_dim=4) # passing occXs and occXs * unpXs if hyp.do_touch_feat: print('using 2d backbone network to generate features from sensor depth image') self.backbone_2D = VGGNet.Feat2d(touch_emb_dim=hyp.feat_dim, do_bn=hyp.do_bn) # if I need to add the 3d encoder decoder I need to add the next line # self.touch_featnet = FeatNet(input_dim=1) # just passing occRs here if hyp.do_touch_forward: # now here I need to pass this through the bottle3d architecture to predict # 1-d vectors print('using context net to turn 3d context grid into 1d feature tensor') self.context_net = bottle3D.Bottle3D(in_channel=hyp.feat_dim,\ pred_dim=hyp.feat_dim) if hyp.do_touch_occ: print('this should not be turned on') from IPython import embed; embed() self.touch_occnet = OccNet() # if hyp.do_touch_embML: # self.touch_embnet3D = EmbNet3D() # metric learning for making touch feature tensor same as visual feature tensor if hyp.do_freeze_feat: print('freezing visual features') self.featnet = self.featnet.eval() assert self.featnet.training == False, "since I am not training FeatNet it should be false" if hyp.do_freeze_touch_feat: print('freezing backbone_2D') self.backbone_2D = self.backbone_2D.eval() if hyp.do_freeze_touch_forward: print('freezing context net') self.context_net = self.context_net.eval() # hyperparams for embedding training not really needed as of now if hyp.do_touch_embML: print('Instantiating Contrastive ML loss') self.num_pos_samples = hyp.emb_3D_num_samples self.batch_k = 2 self.n_negatives = 1 assert (self.num_pos_samples > 0) self.sampler = utils_misc.DistanceWeightedSampling(batch_k=self.batch_k, normalize=False, num_neg_samples=self.n_negatives) self.criterion = utils_misc.MarginLoss() self.beta = 1.2 if hyp.do_moc or hyp.do_eval_recall: print('Instantiating MOC net') self.key_touch_featnet = VGGNet.Feat2d(touch_emb_dim=hyp.feat_dim,\ do_bn=hyp.do_bn) key_weights = self.backbone_2D.state_dict() self.key_touch_featnet.load_state_dict(key_weights) self.key_context_net = bottle3D.Bottle3D(in_channel=hyp.feat_dim,\ pred_dim=hyp.feat_dim) key_context_weights = self.context_net.state_dict() self.key_context_net.load_state_dict(key_context_weights) # check that the two networks indeed have the same weights p1 = get_params(self.backbone_2D) p2 = get_params(self.key_touch_featnet) assert check_equal(p1, p2),\ "initially both the touch networks should have same weights" cp1 = get_params(self.context_net) cp2 = get_params(self.key_context_net) assert check_equal(cp1, cp2),\ "initially both the context networks should have same weights" self.moc_ml_net = MOCTrainingTouch(dict_len=hyp.dict_len,\ num_neg_samples=hyp.num_neg_samples)
class TouchEmbed2D(nn.Module): def __init__(self): """The idea is here the featnet would be frozen, and using some X number of images it will form the features for the object, which will be used to get the closeby embeddings to learn metric learning """ super(TouchEmbed2D, self).__init__() if hyp.do_feat: print('using the visual feat net to generate visual feature tensor') self.featnet = FeatNet(input_dim=4) # passing occXs and occXs * unpXs if hyp.do_touch_feat: print('using 2d backbone network to generate features from sensor depth image') self.backbone_2D = VGGNet.Feat2d(touch_emb_dim=hyp.feat_dim, do_bn=hyp.do_bn) # if I need to add the 3d encoder decoder I need to add the next line # self.touch_featnet = FeatNet(input_dim=1) # just passing occRs here if hyp.do_touch_forward: # now here I need to pass this through the bottle3d architecture to predict # 1-d vectors print('using context net to turn 3d context grid into 1d feature tensor') self.context_net = bottle3D.Bottle3D(in_channel=hyp.feat_dim,\ pred_dim=hyp.feat_dim) if hyp.do_touch_occ: print('this should not be turned on') from IPython import embed; embed() self.touch_occnet = OccNet() # if hyp.do_touch_embML: # self.touch_embnet3D = EmbNet3D() # metric learning for making touch feature tensor same as visual feature tensor if hyp.do_freeze_feat: print('freezing visual features') self.featnet = self.featnet.eval() assert self.featnet.training == False, "since I am not training FeatNet it should be false" if hyp.do_freeze_touch_feat: print('freezing backbone_2D') self.backbone_2D = self.backbone_2D.eval() if hyp.do_freeze_touch_forward: print('freezing context net') self.context_net = self.context_net.eval() # hyperparams for embedding training not really needed as of now if hyp.do_touch_embML: print('Instantiating Contrastive ML loss') self.num_pos_samples = hyp.emb_3D_num_samples self.batch_k = 2 self.n_negatives = 1 assert (self.num_pos_samples > 0) self.sampler = utils_misc.DistanceWeightedSampling(batch_k=self.batch_k, normalize=False, num_neg_samples=self.n_negatives) self.criterion = utils_misc.MarginLoss() self.beta = 1.2 if hyp.do_moc or hyp.do_eval_recall: print('Instantiating MOC net') self.key_touch_featnet = VGGNet.Feat2d(touch_emb_dim=hyp.feat_dim,\ do_bn=hyp.do_bn) key_weights = self.backbone_2D.state_dict() self.key_touch_featnet.load_state_dict(key_weights) self.key_context_net = bottle3D.Bottle3D(in_channel=hyp.feat_dim,\ pred_dim=hyp.feat_dim) key_context_weights = self.context_net.state_dict() self.key_context_net.load_state_dict(key_context_weights) # check that the two networks indeed have the same weights p1 = get_params(self.backbone_2D) p2 = get_params(self.key_touch_featnet) assert check_equal(p1, p2),\ "initially both the touch networks should have same weights" cp1 = get_params(self.context_net) cp2 = get_params(self.key_context_net) assert check_equal(cp1, cp2),\ "initially both the context networks should have same weights" self.moc_ml_net = MOCTrainingTouch(dict_len=hyp.dict_len,\ num_neg_samples=hyp.num_neg_samples) def forward(self, feed, moc_init_done=False, debug=False): summ_writer = utils_improc.Summ_writer( writer = feed['writer'], global_step = feed['global_step'], set_name= feed['set_name'], fps=8) writer = feed['writer'] global_step = feed['global_step'] total_loss = torch.tensor(0.0).cuda() ### ... All things sensor ... ### sensor_rgbs = feed['sensor_imgs'] sensor_depths = feed['sensor_depths'] center_sensor_H, center_sensor_W = sensor_depths[0][0].shape[-1] // 2, sensor_depths[0][0].shape[-2] // 2 ### ... All things sensor end ... ### # 1. Form the memory tensor using the feat net and visual images. # check what all do you need for this and create only those things ## .... Input images .... ## rgb_camRs = feed['rgb_camRs'] rgb_camXs = feed['rgb_camXs'] ## .... Input images end .... ## ## ... Hyperparams ... ## B, H, W, V, S = hyp.B, hyp.H, hyp.W, hyp.V, hyp.S __p = lambda x: pack_seqdim(x, B) __u = lambda x: unpack_seqdim(x, B) PH, PW = hyp.PH, hyp.PW Z, Y, X = hyp.Z, hyp.Y, hyp.X Z2, Y2, X2 = int(Z/2), int(Y/2), int(X/2) ## ... Hyperparams end ... ## ## .... VISUAL TRANSFORMS BEGIN .... ## pix_T_cams = feed['pix_T_cams'] pix_T_cams_ = __p(pix_T_cams) origin_T_camRs = feed['origin_T_camRs'] origin_T_camRs_ = __p(origin_T_camRs) origin_T_camXs = feed['origin_T_camXs'] origin_T_camXs_ = __p(origin_T_camXs) camRs_T_camXs_ = torch.matmul(utils_geom.safe_inverse( origin_T_camRs_), origin_T_camXs_) camXs_T_camRs_ = utils_geom.safe_inverse(camRs_T_camXs_) camRs_T_camXs = __u(camRs_T_camXs_) camXs_T_camRs = __u(camXs_T_camRs_) pix_T_cams_ = utils_geom.pack_intrinsics(pix_T_cams_[:, 0, 0], pix_T_cams_[:, 1, 1], pix_T_cams_[:, 0, 2], pix_T_cams_[:, 1, 2]) pix_T_camRs_ = torch.matmul(pix_T_cams_, camXs_T_camRs_) pix_T_camRs = __u(pix_T_camRs_) ## ... VISUAL TRANSFORMS END ... ## ## ... SENSOR TRANSFORMS BEGIN ... ## sensor_origin_T_camXs = feed['sensor_extrinsics'] sensor_origin_T_camXs_ = __p(sensor_origin_T_camXs) sensor_origin_T_camRs = feed['sensor_origin_T_camRs'] sensor_origin_T_camRs_ = __p(sensor_origin_T_camRs) sensor_camRs_T_origin_ = utils_geom.safe_inverse(sensor_origin_T_camRs_) sensor_camRs_T_camXs_ = torch.matmul(utils_geom.safe_inverse( sensor_origin_T_camRs_), sensor_origin_T_camXs_) sensor_camXs_T_camRs_ = utils_geom.safe_inverse(sensor_camRs_T_camXs_) sensor_camRs_T_camXs = __u(sensor_camRs_T_camXs_) sensor_camXs_T_camRs = __u(sensor_camXs_T_camRs_) sensor_pix_T_cams = feed['sensor_intrinsics'] sensor_pix_T_cams_ = __p(sensor_pix_T_cams) sensor_pix_T_cams_ = utils_geom.pack_intrinsics(sensor_pix_T_cams_[:, 0, 0], sensor_pix_T_cams_[:, 1, 1], sensor_pix_T_cams_[:, 0, 2], sensor_pix_T_cams_[:, 1, 2]) sensor_pix_T_camRs_ = torch.matmul(sensor_pix_T_cams_, sensor_camXs_T_camRs_) sensor_pix_T_camRs = __u(sensor_pix_T_camRs_) ## .... SENSOR TRANSFORMS END .... ## ## .... Visual Input point clouds .... ## xyz_camXs = feed['xyz_camXs'] xyz_camXs_ = __p(xyz_camXs) xyz_camRs_ = utils_geom.apply_4x4(camRs_T_camXs_, xyz_camXs_) # (40, 4, 4) (B*S, N, 3) xyz_camRs = __u(xyz_camRs_) assert all([torch.allclose(xyz_camR, inp_xyz_camR) for xyz_camR, inp_xyz_camR in zip( xyz_camRs, feed['xyz_camRs'] )]), "computation of xyz_camR here and those computed in input do not match" ## .... Visual Input point clouds end .... ## ## ... Sensor input point clouds ... ## sensor_xyz_camXs = feed['sensor_xyz_camXs'] sensor_xyz_camXs_ = __p(sensor_xyz_camXs) sensor_xyz_camRs_ = utils_geom.apply_4x4(sensor_camRs_T_camXs_, sensor_xyz_camXs_) sensor_xyz_camRs = __u(sensor_xyz_camRs_) assert all([torch.allclose(sensor_xyz, inp_sensor_xyz) for sensor_xyz, inp_sensor_xyz in zip( sensor_xyz_camRs, feed['sensor_xyz_camRs'] )]), "the sensor_xyz_camRs computed in forward do not match those computed in input" ## ... visual occupancy computation voxelize the pointcloud from above ... ## occRs_ = utils_vox.voxelize_xyz(xyz_camRs_, Z, Y, X) occXs_ = utils_vox.voxelize_xyz(xyz_camXs_, Z, Y, X) occRs_half_ = utils_vox.voxelize_xyz(xyz_camRs_, Z2, Y2, X2) occXs_half_ = utils_vox.voxelize_xyz(xyz_camXs_, Z2, Y2, X2) ## ... visual occupancy computation end ... NOTE: no unpacking ## ## .. visual occupancy computation for sensor inputs .. ## sensor_occRs_ = utils_vox.voxelize_xyz(sensor_xyz_camRs_, Z, Y, X) sensor_occXs_ = utils_vox.voxelize_xyz(sensor_xyz_camXs_, Z, Y, X) sensor_occRs_half_ = utils_vox.voxelize_xyz(sensor_xyz_camRs_, Z2, Y2, X2) sensor_occXs_half_ = utils_vox.voxelize_xyz(sensor_xyz_camXs_, Z2, Y2, X2) ## ... unproject rgb images ... ## unpRs_ = utils_vox.unproject_rgb_to_mem(__p(rgb_camXs), Z, Y, X, pix_T_camRs_) unpXs_ = utils_vox.unproject_rgb_to_mem(__p(rgb_camXs), Z, Y, X, pix_T_cams_) ## ... unproject rgb finish ... NOTE: no unpacking ## ## ... Make depth images ... ## depth_camXs_, valid_camXs_ = utils_geom.create_depth_image(pix_T_cams_, xyz_camXs_, H, W) dense_xyz_camXs_ = utils_geom.depth2pointcloud(depth_camXs_, pix_T_cams_) dense_xyz_camRs_ = utils_geom.apply_4x4(camRs_T_camXs_, dense_xyz_camXs_) inbound_camXs_ = utils_vox.get_inbounds(dense_xyz_camRs_, Z, Y, X).float() inbound_camXs_ = torch.reshape(inbound_camXs_, [B*S, 1, H, W]) valid_camXs = __u(valid_camXs_) * __u(inbound_camXs_) ## ... Make depth images ... ## ## ... Make sensor depth images ... ## sensor_depth_camXs_, sensor_valid_camXs_ = utils_geom.create_depth_image(sensor_pix_T_cams_, sensor_xyz_camXs_, H, W) sensor_dense_xyz_camXs_ = utils_geom.depth2pointcloud(sensor_depth_camXs_, sensor_pix_T_cams_) sensor_dense_xyz_camRs_ = utils_geom.apply_4x4(sensor_camRs_T_camXs_, sensor_dense_xyz_camXs_) sensor_inbound_camXs_ = utils_vox.get_inbounds(sensor_dense_xyz_camRs_, Z, Y, X).float() sensor_inbound_camXs_ = torch.reshape(sensor_inbound_camXs_, [B*hyp.sensor_S, 1, H, W]) sensor_valid_camXs = __u(sensor_valid_camXs_) * __u(sensor_inbound_camXs_) ### .. Done making sensor depth images .. ## ### ... Sanity check ... Write to tensorboard ... ### summ_writer.summ_oneds('2D_inputs/depth_camXs', torch.unbind(__u(depth_camXs_), dim=1)) summ_writer.summ_oneds('2D_inputs/valid_camXs', torch.unbind(valid_camXs, dim=1)) summ_writer.summ_rgbs('2D_inputs/rgb_camXs', torch.unbind(rgb_camXs, dim=1)) summ_writer.summ_rgbs('2D_inputs/rgb_camRs', torch.unbind(rgb_camRs, dim=1)) summ_writer.summ_occs('3d_inputs/occXs', torch.unbind(__u(occXs_), dim=1), reduce_axes=[2]) summ_writer.summ_unps('3d_inputs/unpXs', torch.unbind(__u(unpXs_), dim=1),\ torch.unbind(__u(occXs_), dim=1)) # A different approach for viewing occRs of sensors sensor_occRs = __u(sensor_occRs_) vis_sensor_occRs = torch.max(sensor_occRs, dim=1, keepdim=True)[0] # summ_writer.summ_occs('3d_inputs/sensor_occXs', torch.unbind(__u(sensor_occXs_), dim=1), # reduce_axes=[2]) summ_writer.summ_occs('3d_inputs/sensor_occRs', torch.unbind(vis_sensor_occRs, dim=1), reduce_axes=[2]) ### ... code for visualizing sensor depths and sensor rgbs ... ### # summ_writer.summ_oneds('2D_inputs/depths_sensor', torch.unbind(sensor_depths, dim=1)) # summ_writer.summ_rgbs('2D_inputs/rgbs_sensor', torch.unbind(sensor_rgbs, dim=1)) # summ_writer.summ_oneds('2D_inputs/validXs_sensor', torch.unbind(sensor_valid_camXs, dim=1)) if summ_writer.save_this: unpRs_ = utils_vox.unproject_rgb_to_mem(__p(rgb_camXs), Z, Y, X, matmul2(pix_T_cams_, camXs_T_camRs_)) unpRs = __u(unpRs_) occRs_ = utils_vox.voxelize_xyz(xyz_camRs_, Z, Y, X) summ_writer.summ_occs('3d_inputs/occRs', torch.unbind(__u(occRs_), dim=1), reduce_axes=[2]) summ_writer.summ_unps('3d_inputs/unpRs', torch.unbind(unpRs, dim=1),\ torch.unbind(__u(occRs_), dim=1)) ### ... Sanity check ... Writing to tensoboard complete ... ### results = list() mask_ = None ### ... Visual featnet part .... ### if hyp.do_feat: featXs_input = torch.cat([__u(occXs_), __u(occXs_)*__u(unpXs_)], dim=2) # B, S, 4, H, W, D featXs_input_ = __p(featXs_input) freeXs_ = utils_vox.get_freespace(__p(xyz_camXs), occXs_half_) freeXs = __u(freeXs_) visXs = torch.clamp(__u(occXs_half_) + freeXs, 0.0, 1.0) if type(mask_) != type(None): assert(list(mask_.shape)[2:5] == list(featXs_input.shape)[2:5]) featXs_, validXs_, _ = self.featnet(featXs_input_, summ_writer, mask=occXs_) # total_loss += feat_loss # Note no need of loss validXs, featXs = __u(validXs_), __u(featXs_) # unpacked into B, S, C, D, H, W # bring everything to ref_frame validRs = utils_vox.apply_4x4_to_voxs(camRs_T_camXs, validXs) visRs = utils_vox.apply_4x4_to_voxs(camRs_T_camXs, visXs) featRs = utils_vox.apply_4x4_to_voxs(camRs_T_camXs, featXs) # This is now in memory coordinates emb3D_e = torch.mean(featRs[:, 1:], dim=1) # context, or the features of the scene emb3D_g = featRs[:, 0] # this is to predict, basically I will pass emb3D_e as input and hope to predict emb3D_g vis3D_e = torch.max(validRs[:, 1:], dim=1)[0] * torch.max(visRs[:, 1:], dim=1)[0] vis3D_g = validRs[:, 0] * visRs[:, 0] #### ... I do not think I need this ... #### results = {} # # if hyp.do_eval_recall: # # results['emb3D_e'] = emb3D_e # # results['emb3D_g'] = emb3D_g # #### ... Check if you need the above summ_writer.summ_feats('3D_feats/featXs_input', torch.unbind(featXs_input, dim=1), pca=True) summ_writer.summ_feats('3D_feats/featXs_output', torch.unbind(featXs, dim=1), pca=True) summ_writer.summ_feats('3D_feats/featRs_output', torch.unbind(featRs, dim=1), pca=True) summ_writer.summ_feats('3D_feats/validRs', torch.unbind(validRs, dim=1), pca=False) summ_writer.summ_feat('3D_feats/vis3D_e', vis3D_e, pca=False) summ_writer.summ_feat('3D_feats/vis3D_g', vis3D_g, pca=False) # I need to aggregate the features and detach to prevent the backward pass on featnet featRs = torch.mean(featRs, dim=1) featRs = featRs.detach() # ... HERE I HAVE THE VISUAL FEATURE TENSOR ... WHICH IS MADE USING 5 EVENLY SPACED VIEWS # # FOR THE TOUCH PART, I HAVE THE OCC and THE AIM IS TO PREDICT FEATURES FROM THEM # if hyp.do_touch_feat: # 1. Pass all the sensor depth images through the backbone network input_sensor_depths = __p(sensor_depths) sensor_features_ = self.backbone_2D(input_sensor_depths) # should normalize these feature tensors sensor_features_ = l2_normalize(sensor_features_, dim=1) sensor_features = __u(sensor_features_) assert torch.allclose(torch.norm(sensor_features_, dim=1), torch.Tensor([1.0]).cuda()),\ "normalization has no effect on you huh." if hyp.do_eval_recall: results['sensor_features'] = sensor_features_ results['sensor_depths'] = input_sensor_depths results['object_img'] = rgb_camRs results['sensor_imgs'] = __p(sensor_rgbs) # if moco is used do the same procedure as above but with a different network # if hyp.do_moc or hyp.do_eval_recall: # 1. Pass all the sensor depth images through the key network key_input_sensor_depths = copy.deepcopy(__p(sensor_depths)) # bx1024x1x16x16->(2048x1x16x16) self.key_touch_featnet.eval() with torch.no_grad(): key_sensor_features_ = self.key_touch_featnet(key_input_sensor_depths) key_sensor_features_ = l2_normalize(key_sensor_features_, dim=1) key_sensor_features = __u(key_sensor_features_) assert torch.allclose(torch.norm(key_sensor_features_, dim=1), torch.Tensor([1.0]).cuda()),\ "normalization has no effect on you huh." # doing the same procedure for moco but with a different network end # # do you want to do metric learning voxel point based using visual features and sensor features if hyp.do_touch_embML and not hyp.do_touch_forward: # trial 1: I do not pass the above obtained features through some encoder decoder in 3d # So compute the location is ref_frame which the center of these depth images will occupy # at all of these locations I will sample the from the visual tensor. It forms the positive pairs # negatives are simply everything except the positive sensor_depths_centers_x = center_sensor_W * torch.ones((hyp.B, hyp.sensor_S)) sensor_depths_centers_x = sensor_depths_centers_x.cuda() sensor_depths_centers_y = center_sensor_H * torch.ones((hyp.B, hyp.sensor_S)) sensor_depths_centers_y = sensor_depths_centers_y.cuda() sensor_depths_centers_z = sensor_depths[:, :, 0, center_sensor_H, center_sensor_W] # Next use Pixels2Camera to unproject all of these together. # merge the batch and the sequence dimension sensor_depths_centers_x = sensor_depths_centers_x.reshape(-1, 1, 1) # BxHxW as required by Pixels2Camera sensor_depths_centers_y = sensor_depths_centers_y.reshape(-1, 1, 1) sensor_depths_centers_z = sensor_depths_centers_z.reshape(-1, 1, 1) fx, fy, x0, y0 = utils_geom.split_intrinsics(sensor_pix_T_cams_) sensor_depths_centers_in_camXs_ = utils_geom.Pixels2Camera(sensor_depths_centers_x, sensor_depths_centers_y, sensor_depths_centers_z, fx, fy, x0, y0) # finally use apply4x4 to get the locations in ref_cam sensor_depths_centers_in_ref_cam_ = utils_geom.apply_4x4(sensor_camRs_T_camXs_, sensor_depths_centers_in_camXs_) # NOTE: convert them to memory coordinates, the name is xyz so I presume it returns xyz but talk to ADAM sensor_depths_centers_in_mem_ = utils_vox.Ref2Mem(sensor_depths_centers_in_ref_cam_, Z2, Y2, X2) sensor_depths_centers_in_mem = sensor_depths_centers_in_mem_.reshape(hyp.B, hyp.sensor_S, -1) if debug: print('assert that you are not entering here') from IPython import embed; embed() # form a (0, 1) volume here at these locations and see if it resembles a cup dim1 = X2 * Y2 * Z2 dim2 = X2 * Y2 dim3 = X2 binary_voxel_grid = torch.zeros((hyp.B, X2, Y2, Z2)) # NOTE: Z is the leading dimension rounded_idxs = torch.round(sensor_depths_centers_in_mem) flat_idxs = dim2 * rounded_idxs[0, :, 0] + dim3 * rounded_idxs[0, :, 1] + rounded_idxs[0, :, 2] flat_idxs1 = dim2 * rounded_idxs[1, :, 0] + dim3 * rounded_idxs[1, :, 1] + rounded_idxs[1, :, 2] flat_idxs1 = flat_idxs1 + dim1 flat_idxs1 = flat_idxs1.long() flat_idxs = flat_idxs.long() flattened_grid = binary_voxel_grid.flatten() flattened_grid[flat_idxs] = 1. flattened_grid[flat_idxs1] = 1. binary_voxel_grid = flattened_grid.view(B, X2, Y2, Z2) assert binary_voxel_grid[0].sum() == len(torch.unique(flat_idxs)), "some indexes are missed here" assert binary_voxel_grid[1].sum() == len(torch.unique(flat_idxs1)), "some indexes are missed here" # o3d.io.write_voxel_grid("forward_pass_save/grid0.ply", binary_voxel_grid[0]) # o3d.io.write_voxel_grid("forward_pass_save/grid1.ply", binary_voxel_grid[0]) # need to save these voxels save_voxel(binary_voxel_grid[0].cpu().numpy(), "forward_pass_save/grid0.binvox") save_voxel(binary_voxel_grid[1].cpu().numpy(), "forward_pass_save/grid1.binvox") from IPython import embed; embed() # use grid sample to get the visual touch tensor at these locations, NOTE: visual tensor features shape is (B, C, N) visual_tensor_features = utils_samp.bilinear_sample3D(featRs, sensor_depths_centers_in_mem[:, :, 0], sensor_depths_centers_in_mem[:, :, 1], sensor_depths_centers_in_mem[:, :, 2]) visual_feature_tensor = visual_tensor_features.permute(0, 2, 1) # pack it visual_feature_tensor_ = __p(visual_feature_tensor) C = list(visual_feature_tensor.shape)[-1] print('C=', C) # do the metric learning this is the same as before. # the code is basically copied from embnet3d.py but some changes are being made very minor emb_vec = torch.stack((sensor_features_, visual_feature_tensor_), dim=1).view(B*self.num_samples*self.batch_k, C) y = torch.stack([torch.range(0,self.num_samples*B-1), torch.range(0,self.num_samples*B-1)], dim=1).view(self.num_samples*B*self.batch_k) a_indices, anchors, positives, negatives, _ = self.sampler(emb_vec) # I need to write my own version of margin loss since the negatives and anchors may not be same dim d_ap = torch.sqrt(torch.sum((positives - anchors)**2, dim=1) + 1e-8) pos_loss = torch.clamp(d_ap - beta + self._margin, min=0.0) # TODO: expand the dims of anchors and tile them and compute the negative loss # do the pair count where you average by contributors only # this is your total loss # Further idea is to check what volumetric locations do each of the depth images corresponds to # unproject the entire depth image and convert to ref. and then sample. if hyp.do_touch_forward: ## ... Begin code for getting crops from visual memory ... ## sensor_depths_centers_x = center_sensor_W * torch.ones((hyp.B, hyp.sensor_S)) sensor_depths_centers_x = sensor_depths_centers_x.cuda() sensor_depths_centers_y = center_sensor_H * torch.ones((hyp.B, hyp.sensor_S)) sensor_depths_centers_y = sensor_depths_centers_y.cuda() sensor_depths_centers_z = sensor_depths[:, :, 0, center_sensor_H, center_sensor_W] # Next use Pixels2Camera to unproject all of these together. # merge the batch and the sequence dimension sensor_depths_centers_x = sensor_depths_centers_x.reshape(-1, 1, 1) sensor_depths_centers_y = sensor_depths_centers_y.reshape(-1, 1, 1) sensor_depths_centers_z = sensor_depths_centers_z.reshape(-1, 1, 1) fx, fy, x0, y0 = utils_geom.split_intrinsics(sensor_pix_T_cams_) sensor_depths_centers_in_camXs_ = utils_geom.Pixels2Camera(sensor_depths_centers_x, sensor_depths_centers_y, sensor_depths_centers_z, fx, fy, x0, y0) sensor_depths_centers_in_world_ = utils_geom.apply_4x4(sensor_origin_T_camXs_, sensor_depths_centers_in_camXs_) # not used by the algorithm ## this will be later used for visualization hence saving it here for now sensor_depths_centers_in_ref_cam_ = utils_geom.apply_4x4(sensor_camRs_T_camXs_, sensor_depths_centers_in_camXs_) # not used by the algorithm sensor_depths_centers_in_camXs = __u(sensor_depths_centers_in_camXs_).squeeze(2) # There has to be a better way to do this, for each of the cameras in the batch I want a box of size (ch, cw, cd) # TODO: rotation is the deviation of the box from the axis aligned do I want this tB, tN, _ = list(sensor_depths_centers_in_camXs.shape) # 2, 512, _ boxlist = torch.zeros(tB, tN, 9) # 2, 512, 9 boxlist[:, :, :3] = sensor_depths_centers_in_camXs # this lies on the object boxlist[:, :, 3:6] = torch.FloatTensor([hyp.contextW, hyp.contextH, hyp.contextD]) # convert the boxlist to lrtlist and to cuda # the rt here transforms the from box coordinates to camera coordinates box_lrtlist = utils_geom.convert_boxlist_to_lrtlist(boxlist) # Now I will use crop_zoom_from_mem functionality to get the features in each of the boxes # I will do it for each of the box separately as required by the api context_grid_list = list() for m in range(box_lrtlist.shape[1]): curr_box = box_lrtlist[:, m, :] context_grid = utils_vox.crop_zoom_from_mem(featRs, curr_box, 8, 8, 8, sensor_camRs_T_camXs[:, m, :, :]) context_grid_list.append(context_grid) context_grid_list = torch.stack(context_grid_list, dim=1) context_grid_list_ = __p(context_grid_list) ## ... till here I believe I have not introduced any randomness, so the points are still in ## ... End code for getting crops around this center of certain height, width and depth ... ## ## ... Begin code for passing the context grid through 3D CNN to obtain a vector ... ## sensor_cam_locs = feed['sensor_locs'] # these are in origin coordinates sensor_cam_quats = feed['sensor_quats'] # this too in in world_coordinates sensor_cam_locs_ = __p(sensor_cam_locs) sensor_cam_quats_ = __p(sensor_cam_quats) sensor_cam_locs_in_R_ = utils_geom.apply_4x4(sensor_camRs_T_origin_, sensor_cam_locs_.unsqueeze(1)).squeeze(1) # TODO TODO TODO confirm that this is right? TODO TODO TODO get_r_mat = lambda cam_quat: transformations.quaternion_matrix_py(cam_quat) rot_mat_Xs_ = torch.from_numpy(np.stack(list(map(get_r_mat, sensor_cam_quats_.cpu().numpy())))).to(sensor_cam_locs_.device).float() rot_mat_Rs_ = torch.bmm(sensor_camRs_T_origin_, rot_mat_Xs_) get_quat = lambda r_mat: transformations.quaternion_from_matrix_py(r_mat) sensor_quats_in_R_ = torch.from_numpy(np.stack(list(map(get_quat, rot_mat_Rs_.cpu().numpy())))).to(sensor_cam_locs_.device).float() pred_features_ = self.context_net(context_grid_list_,\ sensor_cam_locs_in_R_, sensor_quats_in_R_) # normalize pred_features_ = l2_normalize(pred_features_, dim=1) pred_features = __u(pred_features_) # if doing moco I have to pass the inputs through the key(slow) network as well # if hyp.do_moc or hyp.do_eval_recall: key_context_grid_list_ = copy.deepcopy(context_grid_list_) key_sensor_cam_locs_in_R_ = copy.deepcopy(sensor_cam_locs_in_R_) key_sensor_quats_in_R_ = copy.deepcopy(sensor_quats_in_R_) self.key_context_net.eval() with torch.no_grad(): key_pred_features_ = self.key_context_net(key_context_grid_list_,\ key_sensor_cam_locs_in_R_, key_sensor_quats_in_R_) # normalize, normalization is very important why though key_pred_features_ = l2_normalize(key_pred_features_, dim=1) key_pred_features = __u(key_pred_features_) # end passing of the input through the slow network this is necessary for moco # ## ... End code for passing the context grid through 3D CNN to obtain a vector ... ## ## ... Begin code for doing metric learning between pred_features and sensor features ... ## # 1. Subsample both based on the number of positive samples if hyp.do_touch_embML: assert(hyp.do_touch_forward) assert(hyp.do_touch_feat) perm = torch.randperm(len(pred_features_)) ## 1024 chosen_sensor_feats_ = sensor_features_[perm[:self.num_pos_samples*hyp.B]] chosen_pred_feats_ = pred_features_[perm[:self.num_pos_samples*B]] # 2. form the emb_vec and get pos and negative samples for the batch emb_vec = torch.stack((chosen_sensor_feats_, chosen_pred_feats_), dim=1).view(hyp.B*self.num_pos_samples*self.batch_k, -1) y = torch.stack([torch.range(0, self.num_pos_samples*B-1), torch.range(0, self.num_pos_samples*B-1)],\ dim=1).view(B*self.num_pos_samples*self.batch_k) # (0, 0, 1, 1, ..., 255, 255) a_indices, anchors, positives, negatives, _ = self.sampler(emb_vec) # 3. Compute the loss, ML loss and the l2 distance betwee the embeddings margin_loss, _ = self.criterion(anchors, positives, negatives, self.beta, y[a_indices]) total_loss = utils_misc.add_loss('embtouch/emb_touch_ml_loss', total_loss, margin_loss, hyp.emb_3D_ml_coeff, summ_writer) # the l2 loss between the embeddings l2_loss = torch.nn.functional.mse_loss(chosen_sensor_feats_, chosen_pred_feats_) total_loss = utils_misc.add_loss('embtouch/emb_l2_loss', total_loss, l2_loss, hyp.emb_3D_l2_coeff, summ_writer) ## ... End code for doing metric learning between pred_features and sensor_features ... ## ## ... Begin code for doing moc inspired ML between pred_features and sensor_features ... ## if hyp.do_moc and moc_init_done: moc_loss = self.moc_ml_net(sensor_features_, key_sensor_features_,\ pred_features_, key_pred_features_, summ_writer) total_loss += moc_loss ## ... End code for doing moc inspired ML between pred_features and sensor_feature ... ## ## ... add code for filling up results needed for eval recall ... ## if hyp.do_eval_recall and moc_init_done: results['context_features'] = pred_features_ results['sensor_depth_centers_in_world'] = sensor_depths_centers_in_world_ results['sensor_depths_centers_in_ref_cam'] = sensor_depths_centers_in_ref_cam_ results['object_name'] = feed['object_name'] # I will do precision recall here at different recall values and summarize it using tensorboard recalls = [1, 5, 10, 50, 100, 200] # also should not include any gradients because of this # fast_sensor_emb_e = sensor_features_ # fast_context_emb_e = pred_features_ # slow_sensor_emb_g = key_sensor_features_ # slow_context_emb_g = key_context_features_ fast_sensor_emb_e = sensor_features_.clone().detach() fast_context_emb_e = pred_features_.clone().detach() # I will do multiple eval recalls here slow_sensor_emb_g = key_sensor_features_.clone().detach() slow_context_emb_g = key_pred_features_.clone().detach() # assuming the above thing goes well fast_sensor_emb_e = fast_sensor_emb_e.cpu().numpy() fast_context_emb_e = fast_context_emb_e.cpu().numpy() slow_sensor_emb_g = slow_sensor_emb_g.cpu().numpy() slow_context_emb_g = slow_context_emb_g.cpu().numpy() # now also move the vis to numpy and plot it using matplotlib vis_e = __p(sensor_rgbs) vis_g = __p(sensor_rgbs) np_vis_e = vis_e.cpu().detach().numpy() np_vis_e = np.transpose(np_vis_e, [0, 2, 3, 1]) np_vis_g = vis_g.cpu().detach().numpy() np_vis_g = np.transpose(np_vis_g, [0, 2, 3, 1]) # bring it back to original color np_vis_g = ((np_vis_g+0.5) * 255).astype(np.uint8) np_vis_e = ((np_vis_e+0.5) * 255).astype(np.uint8) # now compare fast_sensor_emb_e with slow_context_emb_g # since I am doing positive against this fast_sensor_emb_e_list = [fast_sensor_emb_e, np_vis_e] slow_context_emb_g_list = [slow_context_emb_g, np_vis_g] prec, vis, chosen_inds_and_neighbors_inds = compute_precision( fast_sensor_emb_e_list, slow_context_emb_g_list, recalls=recalls ) # finally plot the nearest neighbour retrieval and move ahead if feed['global_step'] % 1 == 0: plot_nearest_neighbours(vis, step=feed['global_step'], save_dir='/home/gauravp/eval_results', name='fast_sensor_slow_context') # plot the precisions at different recalls for pr, re in enumerate(recalls): summ_writer.summ_scalar(f'evrefast_sensor_slow_context/recall@{re}',\ prec[pr]) # now compare fast_context_emb_e with slow_sensor_emb_g fast_context_emb_e_list = [fast_context_emb_e, np_vis_e] slow_sensor_emb_g_list = [slow_sensor_emb_g, np_vis_g] prec, vis, chosen_inds_and_neighbors_inds = compute_precision( fast_context_emb_e_list, slow_sensor_emb_g_list, recalls=recalls ) if feed['global_step'] % 1 == 0: plot_nearest_neighbours(vis, step=feed['global_step'], save_dir='/home/gauravp/eval_results', name='fast_context_slow_sensor') # plot the precisions at different recalls for pr, re in enumerate(recalls): summ_writer.summ_scalar(f'evrefast_context_slow_sensor/recall@{re}',\ prec[pr]) # now finally compare both the fast, I presume we want them to go closer too fast_sensor_list = [fast_sensor_emb_e, np_vis_e] fast_context_list = [fast_context_emb_e, np_vis_g] prec, vis, chosen_inds_and_neighbors_inds = compute_precision( fast_sensor_list, fast_context_list, recalls=recalls ) if feed['global_step'] % 1 == 0: plot_nearest_neighbours(vis, step=feed['global_step'], save_dir='/home/gauravp/eval_results', name='fast_sensor_fast_context') for pr, re in enumerate(recalls): summ_writer.summ_scalar(f'evrefast_sensor_fast_context/recall@{re}',\ prec[pr]) ## ... done code for filling up results needed for eval recall ... ## summ_writer.summ_scalar('loss', total_loss.cpu().item()) return total_loss, results, [key_sensor_features_, key_pred_features_]
class MujocoOffline(nn.Module): def __init__(self, config): super(MujocoOffline, self).__init__() self.config = config if self.config.do_feat: print('------- adding featnet --------') self.featnet = FeatNet(self.config) if self.config.do_occ: print('------- adding occnet ---------') self.occnet = OccNet(self.config) if self.config.do_view: print('------- adding viewnet --------') self.viewnet = ViewNet(self.config) if self.config.do_det: print('------- adding detnet ---------') self.detnet = DetNet(self.config) # coordinate range self.coord_cam_front = Coord(-0.5, 0.5, -0.5, 0.5, 0.2, 1.2, 0.0, -0.4) self.coord_mem = Coord(-0.5, 0.5, -0.5, 0.5, -0.5, 0.5, 0.0, -0.4) MH, MW, MD = self.config.Y, self.config.X, self.config.Z MH2, MW2, MD2 = int(MH / 2), int(MW / 2), int(MD / 2) # voxel size mem_protos = VoxProto([MH, MW, MD]) halfmem_protos = VoxProto([MH2, MW2, MD2]) #combine self.mem_coord_cams = VoxCoord(self.coord_cam_front, mem_protos) self.mem_coord_Rs = VoxCoord(self.coord_mem, mem_protos) self.halfmem_coord_cams = VoxCoord(self.coord_cam_front, halfmem_protos) self.halfmem_coord_Rs = VoxCoord(self.coord_mem, halfmem_protos) self.feat_mem_coord_cams = None #self.halfmem_coord_Rs self.feat_mem_coord_Rs = None self.is_learned_cluster_centers = False def save_local_variables(self): output = dict() return output def unproject(self, cam_rgbd_inputs, cam_info_inputs): rgb_camXs, xyz_camXs = cam_rgbd_inputs pix_T_cams, origin_T_camXs, origin_T_camRs = cam_info_inputs B, H, W, V, S = self.config.B, self.config.H, self.config.W, self.config.V, self.config.S PH, PW = self.config.PH, self.config.PW # this is the size of the predicted image # the next are the memory dimensions, do not know why this naming though # merge sequence and batch dimensions __p = lambda x: utils.basic.pack_seqdim(x, B) # unmerge sequence and batch dimensions __u = lambda x: utils.basic.unpack_seqdim(x, B) pix_T_cams_ = __p(pix_T_cams) # packing here the (B,S) => (B*S) # intrinsic matrix packed and unpacked end origin_T_camRs_ = __p(origin_T_camRs) origin_T_camXs_ = __p(origin_T_camXs) # origin_T_camXs unpacked and packed end # completed getting inputs now combining them # 1. Converts from camX to camR which is Adam's coordinate system # get from camX_T_camR and camR_T_camX and pack unpack it camRs_T_camXs_ = torch.matmul(utils.geom.safe_inverse(origin_T_camRs_), origin_T_camXs_) camXs_T_camRs_ = utils.geom.safe_inverse(camRs_T_camXs_) camRs_T_camXs = __u(camRs_T_camXs_) camXs_T_camRs = __u(camXs_T_camRs_) # end of camX_T_camR and camR_T_camX and pack unpack it # goes directly from camR to image in each camera image frame pix_T_cams_ = utils.geom.pack_intrinsics(pix_T_cams_[:, 0, 0], pix_T_cams_[:, 1, 1], pix_T_cams_[:, 0, 2], pix_T_cams_[:, 1, 2]) pix_T_camRs_ = torch.matmul(pix_T_cams_, camXs_T_camRs_) pix_T_camRs = __u(pix_T_camRs_) # end of computation for matrix which goes from camR to each camera image frame # pointclouds in each camera frame xyz_camXs_ = __p(xyz_camXs) # pointclouds converted to camR coordinate system xyz_camRs_ = utils.geom.apply_4x4(camRs_T_camXs_, xyz_camXs_) xyz_camRs = __u(xyz_camRs_) # TODO: visualize the point cloud here and check that it makes sense # get occupancy maps from pointclouds # QUESTION: what is the space you are discretizing, I mean the extent of the space occRs_ = utils.vox.voxelize_xyz(xyz_camRs_, self.mem_coord_Rs) occXs_ = utils.vox.voxelize_xyz(xyz_camXs_, self.mem_coord_cams) occRs_half_ = utils.vox.voxelize_xyz(xyz_camRs_, self.halfmem_coord_Rs) occXs_half_ = utils.vox.voxelize_xyz(xyz_camXs_, self.halfmem_coord_cams) occRs = __u(occRs_) occXs = __u(occXs_) occRs_half = __u(occRs_half_) occXs_half = __u(occXs_half_) # unproject depth images, This is done for the color images not the depths ## rgb unprojection, bilinearly samples and fills the grid my_device = rgb_camXs.device unpRs_ = utils.vox.unproject_rgb_to_mem(__p(rgb_camXs), pix_T_camRs_, self.mem_coord_Rs, device=my_device) unpXs_ = utils.vox.unproject_rgb_to_mem(__p(rgb_camXs), pix_T_cams_, self.mem_coord_cams, device=my_device) unpRs = __u(unpRs_) unpXs = __u(unpXs_) unpRs_half_ = utils.vox.unproject_rgb_to_mem(__p(rgb_camXs), pix_T_camRs_, self.halfmem_coord_Rs, device=my_device) unpRs_half = __u(unpRs_half_) unp_visRs = utils.improc.get_unps_vis(unpRs_half, occRs_half) unp_visRs = torch.mean(unp_visRs, dim=1) # NOTE: still do not know why is this required or where is this used for that matter depth_camXs_, valid_camXs_ = utils.geom.create_depth_image( pix_T_cams_, xyz_camXs_, H, W) dense_xyz_camXs_ = utils.geom.depth2pointcloud(depth_camXs_, pix_T_cams_) dense_xyz_camRs_ = utils.geom.apply_4x4(camRs_T_camXs_, dense_xyz_camXs_) # this is B*S x H*W x 3 inbound_camXs_ = utils.vox.get_inbounds(dense_xyz_camRs_, self.mem_coord_cams).float() inbound_camXs_ = torch.reshape( inbound_camXs_, [B * S, 1, H, W ]) # NOTE: Here there is a difference in tensorflow code inbound_camXs = __u(inbound_camXs_) depth_camXs = __u(depth_camXs_) valid_camXs = __u(valid_camXs_) * inbound_camXs return depth_camXs, valid_camXs, camRs_T_camXs, camXs_T_camRs, unpXs, unpRs, occXs, occRs, occXs_half, occRs_half, unp_visRs def predict_forward(self, feed): cam_rgbd_inputs = (feed["rgb_camXs"], feed["xyz_camXs"]) cam_info_inputs = (feed["pix_T_cams"], feed["origin_T_camXs"], feed["origin_T_camRs"]) depth_camXs, valid_camXs, camRs_T_camXs, camXs_T_camRs, unpXs, unpRs, occXs, occRs, occXs_half, occRs_half = self.unproject( cam_rgbd_inputs, cam_info_inputs) B = self.config.B __p = lambda x: utils.basic.pack_seqdim(x, B) # unmerge sequence and batch dimensions __u = lambda x: utils.basic.unpack_seqdim(x, B) if self.config.do_feat: rgb_camXs, xyz_camXs = cam_rgbd_inputs featXs_input = torch.cat([occXs, occXs * unpXs], dim=2) # B, S, 4, H, W, D featXs_input_ = __p(featXs_input) freeXs_ = utils.vox.get_freespace(__p(xyz_camXs), __p(occXs_half), self.halfmem_coord_cams) freeXs = __u(freeXs_) visXs = torch.clamp(occXs_half + freeXs, 0.0, 1.0) #if type(mask_) != type(None): # featXs_input: B x NVIEWS x 4 x 64 x 64 x 64 assert (list(occXs.shape)[3:6] == list(featXs_input.shape)[3:6]) featXs_, validXs_, feat_loss = self.featnet( featXs_input_, mask=__p(occXs), set_num=feed['set_num']) assert feat_loss.item( ) == 0.0, "there is nothing to guide featnet by itself" # for each view features are being predicted, NOTE that nothing is brought into common view yet validXs, featXs = __u(validXs_), __u(featXs_) #### .... BEGIN Converting everything to ref frame .... #### validRs = utils.vox.apply_4x4_to_voxs( camRs_T_camXs, validXs, mem_coord_As=self.halfmem_coord_cams, mem_coord_Bs=self.halfmem_coord_Rs) visRs = utils.vox.apply_4x4_to_voxs( camRs_T_camXs, visXs, mem_coord_As=self.halfmem_coord_cams, mem_coord_Bs=self.halfmem_coord_Rs) featRs = utils.vox.apply_4x4_to_voxs( camRs_T_camXs, featXs, mem_coord_As=self.halfmem_coord_cams, mem_coord_Bs=self.halfmem_coord_Rs) if self.feat_mem_coord_Rs == None: self.feat_mem_coord_Rs = self.halfmem_coord_Rs #### .... featRs_without_target_view contains features from all the views #### .... warped and brought into common frame and aggregated .... Using #### .... features occupancy and target view should be predicted .... #### # B x 32 x H x W x D featsRs_without_target_view = torch.mean(featRs[:, 1:], dim=1) if self.config.do_view: assert self.config.do_feat PH, PW = self.config.PH, self.config.PW sy = float(PH) / float(self.config.H) sx = float(PW) / float(self.config.W) assert (sx == 0.5) assert (sy == 0.5) # projpix_T_cams, are the intrinsics for the projection, just scale the true intrinsics pix_T_cams = feed["pix_T_cams"] projpix_T_cams = __u( utils.geom.scale_intrinsics(__p(pix_T_cams), sx, sy)) # now I will project the predicted feats to target view (warp) feat_projtarget_view = utils.vox.apply_pixX_T_memR_to_voxR( projpix_T_cams[:, 0], camXs_T_camRs[:, 0], self.halfmem_coord_Rs, featsRs_without_target_view, self.config.view_depth, PH, PW) rgb_X0 = utils.basic.downsample( rgb_camXs[:, 0], 2) ## NOTE: this is the ground truth # rgb_e: b x 3 x 64 x 64 view_loss, rgb_e, emb2D_e = self.viewnet(feat_projtarget_view, rgb_X0, set_num=feed['set_num']) #crop object features bbox_in_ref_cam = feed['bbox_in_ref_cam'] # based on the batch size this would be B, N, 8, 3 min_bounds = bbox_in_ref_cam[:, :, 0, :] max_bounds = bbox_in_ref_cam[:, :, -1, :] lengths = torch.abs(max_bounds - min_bounds) center = (max_bounds + min_bounds) * 0.5 # now form the box and then covert to lrt list B = self.config.B # since i have only one box N = 1 # number of objects # 9 is cx, cy, cz, lx, ly, lz, rx, ry, rz boxlist = torch.zeros(B, N, 9) # NOTE: Note: I am assuming here that N = 1 !!!!!! boxlist[:, :, :3] = center #.unsqueeze(1) boxlist[:, :, 3:6] = lengths #.unsqueeze(1) # convert it to lrt list, it contains box length and rt to go # from box coordinates to ref coordinate system. box_lrtlist = utils.geom.convert_boxlist_to_lrtlist(boxlist) # now this is already in the ref coordinate system which was not # the case with my previous use of the crop_zoom_from_mem func. # Hence I had previously included camR_T_camXs which is not req here _, _, box_dim = box_lrtlist.shape presumably_object_tensor = utils.vox.crop_zoom_from_mem( featsRs_without_target_view, self.feat_mem_coord_Rs, torch.reshape(box_lrtlist[:, :, :], [B * N, box_dim]), 32, 32, 32) _, C, H, W, D = presumably_object_tensor.shape presumably_object_tensor = torch.reshape( presumably_object_tensor.permute([0, 2, 3, 4, 1]), [B, N, H, W, D, C]) # NOTE: As of now I am not doing backprop through this Tensor so # no need to keep it in gpu anymore results = dict() results['object_tensor'] = presumably_object_tensor.cpu().detach( ).numpy() results[ 'featsRs_without_target_view'] = featsRs_without_target_view.permute( [0, 2, 3, 4, 1]).cpu().detach().numpy() results['rgb_e'] = rgb_e.permute(0, 2, 3, 1).cpu().detach().numpy() # Add the plot of this to tensorboard, and also think how can you # visualize if the correct thing is being returned to you. return results def predict_forward_bbox_detector(self, feed): # here I assume that this function will be called only during inference, so all the sequences should be used results = dict() cam_rgbd_inputs = (feed['rgb_camXs'], feed['xyz_camXs']) cam_info_inputs = (feed['pix_T_cams'], feed['origin_T_camXs'], feed['origin_T_camRs']) B = self.config.B __p = lambda x: utils.basic.pack_seqdim(x, B) __u = lambda x: utils.basic.unpack_seqdim(x, B) # if self.config.do_det: # # NOTE: this does not contain a valid box # gt_boxes_corners = feed['bbox_in_ref_cam'] ## fill in some random values # gt_boxesRMem_corners = utils.vox.Ref2Mem(gt_boxes_corners, self.halfmem_coord_Rs) # gt_boxesRMem_corners = gt_boxesRMem_corners.unsqueeze(1) # this indicates the number of boxes # # # I have corners in mem now, I will convert it to boxlist # gt_boxesRMem_theta = utils.geom.convert_corners_to_axis_aligned_boxlist(gt_boxesRMem_corners) # scores = torch.ones(self.config.B, 1).float().to(gt_boxesRMem_theta.device) depth_camXs, valid_camXs, camRs_T_camXs, camXs_T_camRs, unpXs, unpRs, occXs, occRs, occXs_half, occRs_half, unp_visRs = self.unproject( cam_rgbd_inputs, cam_info_inputs) # put the model in eval mode here self.featnet.eval() assert self.featnet.training == False, "should have batch norm switched off" self.detnet.eval() assert self.detnet.training == False, "should have batch norm switched off here" if self.config.do_feat: rgb_camXs, xyz_camXs = cam_rgbd_inputs featXs_input = torch.cat([occXs, occXs * unpXs], dim=2) # B, S, 4, H, W, D featXs_input_ = __p(featXs_input) freeXs_ = utils.vox.get_freespace(__p(xyz_camXs), __p(occXs_half), self.halfmem_coord_cams) freeXs = __u(freeXs_) visXs = torch.clamp(occXs_half + freeXs, 0.0, 1.0) #if type(mask_) != type(None): # featXs_input: B x NVIEWS x 4 x 64 x 64 x 64 assert (list(occXs.shape)[3:6] == list(featXs_input.shape)[3:6]) with torch.no_grad(): assert self.featnet.training == False featXs_, validXs_, feat_loss = self.featnet( featXs_input_, mask=__p(occXs), set_num=feed['set_num']) validXs, featXs = __u(validXs_), __u(featXs_) validRs = utils.vox.apply_4x4_to_voxs( camRs_T_camXs, validXs, mem_coord_As=self.halfmem_coord_cams, mem_coord_Bs=self.halfmem_coord_Rs) visRs = utils.vox.apply_4x4_to_voxs( camRs_T_camXs, visXs, mem_coord_As=self.halfmem_coord_cams, mem_coord_Bs=self.halfmem_coord_Rs) featRs = utils.vox.apply_4x4_to_voxs( camRs_T_camXs, featXs, mem_coord_As=self.halfmem_coord_cams, mem_coord_Bs=self.halfmem_coord_Rs) if self.feat_mem_coord_Rs == None: self.feat_mem_coord_Rs = self.halfmem_coord_Rs # since only using for prediction all the views can be used? think about this features = torch.mean(featRs, dim=1) # across the sequence dimension if self.config.do_det: self.axboxlist_memR = gt_boxesRMem_theta.clone() self.scorelist = scores # TODO: some parts of this network are confusing to me, understand it thoroughly with torch.no_grad(): assert self.detnet.training == False detect_loss, boxlist_memR_e, scorelist_e, tidlist_e, sco, ove = self.detnet( self.axboxlist_memR, self.scorelist, features, summ_writer=None) # now that I have the box list I need to convert it into corners and return # convert it to ref image and return, mem to adam to ref cam # adam_T_ref = feed['adam_T_camRs'].squeeze(1) # ref_T_adam = torch.inverse(adam_T_ref) pred_box_corners_mem = utils.geom.transform_boxes_to_corners( boxlist_memR_e) pred_box_corners_adam = utils.geom.apply_4x4_to_corners( utils.coordTcoord.get_ref_T_mem(B, self.halfmem_coord_Rs), pred_box_corners_mem) #pred_box_corners_adam = utils.vox.Mem2Ref(pred_box_corners_mem, self.halfmem_coord_Rs) # pred_box_ref = utils.geom.apply_4x4_to_corners(ref_T_adam, pred_box_corners_adam) results['predicted_boxes_adam'] = pred_box_corners_adam results['scorelist'] = scorelist_e results['tidlist'] = tidlist_e return results def convert_objects_to_features(self, feed): results = self.predict_forward(feed) return results['object_tensor'] def dump_one_batch(self, feed): import pickle import copy feed_copy = dict() i = 0 for key in feed: if key in ['record', 'writer', 'global_step']: continue if torch.is_tensor(feed[key]): tensor_np = feed[key].cpu() feed_copy[key] = tensor_np else: feed_copy[key] = feed[key] i += 1 #if i > 1: # break with open("tmp/feed.pkl", "wb") as f: pickle.dump(feed_copy, f) import ipdb ipdb.set_trace() def forward(self, feed): # feed is the input here, let's see what it has results = dict() #self.dump_one_batch(feed) # Whenever forward is called, this is instantiated which creates summ_writer object # save this is True if global_step % log_freq == 0 summ_writer = utils.improc.Summ_writer(config=self.config, writer=feed['writer'], global_step=feed['global_step'], set_name=feed['set_name'], fps=8) writer = feed['writer'] #global_step = feed['global_step'] total_loss = torch.tensor(0.0).cuda() cam_rgbd_inputs = (feed["rgb_camXs"], feed["xyz_camXs"]) cam_info_inputs = (feed["pix_T_cams"], feed["origin_T_camXs"], feed["origin_T_camRs"]) depth_camXs, valid_camXs, camRs_T_camXs, camXs_T_camRs, unpXs, unpRs, occXs, occRs, occXs_half, occRs_half, unp_visRs = self.unproject( cam_rgbd_inputs, cam_info_inputs) B = self.config.B __p = lambda x: utils.basic.pack_seqdim(x, B) # unmerge sequence and batch dimensions __u = lambda x: utils.basic.unpack_seqdim(x, B) #### ... VISUALIZE what we got ... #### # prepare stuff for the detector if self.config.do_det: gt_boxesR_corners = feed['bbox_in_ref_cam'] gt_boxesR_corners_ = __p(gt_boxesR_corners) # convert the corners into memory coordinates gt_boxesRMem_corners_ = utils.vox.Ref2Mem(gt_boxesR_corners_, self.halfmem_coord_Rs) gt_boxesRMem_corners = __u(gt_boxesRMem_corners_) #.unsqueeze(1) gt_boxesRMem_theta = utils.geom.convert_corners_to_axis_aligned_boxlist( gt_boxesRMem_corners) # finally get the scores, I am assuming 1 since all boxes are visible for me and all boxes for me is 1 scores = torch.ones(B, 1).float().to(gt_boxesRMem_theta.device) if not feed['set_num'] == 1: rgb_camXs, xyz_camXs = cam_rgbd_inputs rgb_camRs = feed["rgb_camRs"] summ_writer.summ_oneds('2D_inputs/depth_camXs', torch.unbind(depth_camXs, dim=1)) summ_writer.summ_oneds('2D_inputs/valid_camXs', torch.unbind(valid_camXs, dim=1)) summ_writer.summ_rgbs('2D_inputs/rgb_camXs', torch.unbind(rgb_camXs, dim=1)) summ_writer.summ_rgbs('2D_inputs/rgb_camRs', torch.unbind(rgb_camRs, dim=1)) summ_writer.summ_occs('3d_inputs/occXs', torch.unbind(occXs, dim=1), reduce_axes=[2]) summ_writer.summ_unps('3d_inputs/unpXs', torch.unbind(unpXs, dim=1), torch.unbind(occXs, dim=1)) if summ_writer.save_this: # why compute again? #unpRs_ = utils.vox.unproject_rgb_to_mem(__p(rgb_camXs), utils.basic.matmul2(pix_T_cams_, camXs_T_camRs_), self.mem_coord_Rs) #unpRs = __u(unpRs_) #occRs_ = utils.vox.voxelize_xyz(xyz_camRs_, self.mem_coord_Rs) summ_writer.summ_occs('3d_inputs/occRs', torch.unbind(occRs, dim=1), reduce_axes=[2]) summ_writer.summ_unps('3d_inputs/unpRs', torch.unbind(unpRs, dim=1), torch.unbind(occRs, dim=1)) else: rgb_camXs, xyz_camXs = cam_rgbd_inputs rgb_camRs = feed["rgb_camRs"] summ_writer.summ_oneds('2D_inputs_val/depth_camXs', torch.unbind(depth_camXs, dim=1)) summ_writer.summ_oneds('2D_inputs_val/valid_camXs', torch.unbind(valid_camXs, dim=1)) summ_writer.summ_rgbs('2D_inputs_val/rgb_camXs', torch.unbind(rgb_camXs, dim=1)) summ_writer.summ_rgbs('2D_inputs_val/rgb_camRs', torch.unbind(rgb_camRs, dim=1)) summ_writer.summ_occs('3d_inputs_val/occXs', torch.unbind(occXs, dim=1), reduce_axes=[2]) summ_writer.summ_unps('3d_inputs_val/unpXs', torch.unbind(unpXs, dim=1), torch.unbind(occXs, dim=1)) if summ_writer.save_this: #unpRs_ = utils.vox.unproject_rgb_to_mem(__p(rgb_camXs), Z, Y, X, utils.basic.matmul2(pix_T_cams_, camXs_T_camRs_)) #unpRs = __u(unpRs_) #occRs_ = utils.vox.voxelize_xyz(xyz_camRs_, Z, Y, X) summ_writer.summ_occs('3d_inputs_val/occRs', torch.unbind(occRs, dim=1), reduce_axes=[2]) summ_writer.summ_unps('3d_inputs_val/unpRs', torch.unbind(unpRs, dim=1), torch.unbind(occRs, dim=1)) # the idea behind view-pred is form memory with the remaining views project it to target view and # then use this memory to predict the target image # idea behind occ_prediction is use the memory to predict occupancy in ref view and compare it # with the ground truth occupancy in the ref view if self.config.do_feat: rgb_camXs, xyz_camXs = cam_rgbd_inputs featXs_input = torch.cat([occXs, occXs * unpXs], dim=2) # B, S, 4, H, W, D featXs_input_ = __p(featXs_input) freeXs_ = utils.vox.get_freespace(__p(xyz_camXs), __p(occXs_half), self.halfmem_coord_cams) freeXs = __u(freeXs_) visXs = torch.clamp(occXs_half + freeXs, 0.0, 1.0) #if type(mask_) != type(None): # featXs_input: B x NVIEWS x 4 x 64 x 64 x 64 assert (list(occXs.shape)[3:6] == list(featXs_input.shape)[3:6]) featXs_, validXs_, feat_loss = self.featnet( featXs_input_, summ_writer, mask=__p(occXs), set_num=feed['set_num']) total_loss += feat_loss assert feat_loss.item( ) == 0.0, "there is nothing to guide featnet by itself" # for each view features are being predicted, NOTE that nothing is brought into common view yet validXs, featXs = __u(validXs_), __u(featXs_) #### .... BEGIN Converting everything to ref frame .... #### validRs = utils.vox.apply_4x4_to_voxs( camRs_T_camXs, validXs, mem_coord_As=self.halfmem_coord_cams, mem_coord_Bs=self.halfmem_coord_Rs) visRs = utils.vox.apply_4x4_to_voxs( camRs_T_camXs, visXs, mem_coord_As=self.halfmem_coord_cams, mem_coord_Bs=self.halfmem_coord_Rs) featRs = utils.vox.apply_4x4_to_voxs( camRs_T_camXs, featXs, mem_coord_As=self.halfmem_coord_cams, mem_coord_Bs=self.halfmem_coord_Rs) if self.feat_mem_coord_Rs == None: self.feat_mem_coord_Rs = self.halfmem_coord_Rs #### .... END converting everything to ref frame .... #### ### ... Remember _e added at the end means it is estimated ... ### vis3D_e = torch.max(validRs[:, 1:], dim=1)[0] * torch.max( visRs[:, 1:], dim=1)[0] ### ... only thing which is using _e is below visualization ... ### if not feed['set_num'] == 1: summ_writer.summ_feats('3D_feats/featXs_input', torch.unbind(featXs_input, dim=1), pca=True) summ_writer.summ_feats('3D_feats/featXs_output', torch.unbind(featXs, dim=1), pca=True) summ_writer.summ_feats('3D_feats/featRs_output', torch.unbind(featRs, dim=1), pca=True) summ_writer.summ_feats('3D_feats/validRs', torch.unbind(validRs, dim=1), pca=False) summ_writer.summ_feat('3D_feats/vis3D_e', vis3D_e, pca=False) else: summ_writer.summ_feats('3D_feats_val/featXs_input', torch.unbind(featXs_input, dim=1), pca=True) summ_writer.summ_feats('3D_feats_val/featXs_output', torch.unbind(featXs, dim=1), pca=True) summ_writer.summ_feats('3D_feats_val/featRs_output', torch.unbind(featRs, dim=1), pca=True) summ_writer.summ_feats('3D_feats_val/validRs', torch.unbind(validRs, dim=1), pca=False) summ_writer.summ_feat('3D_feats_val/vis3D_e', vis3D_e, pca=False) #### .... featRs_without_target_view contains features from all the views #### .... warped and brought into common frame and aggregated .... Using #### .... features occupancy and target view should be predicted .... #### featsRs_without_target_view = torch.mean(featRs[:, 1:], dim=1) if self.config.do_generate_data or (self.config.do_validation and feed['set_num'] == 1): featRs_with_target_view = torch.mean(featRs, dim=1) if self.config.do_occ and self.config.occ_do_cheap: occRs_sup, freeRs_sup, freeXs = utils.vox.prep_occs_supervision( xyz_camXs, occRs_half, occXs_half, camRs_T_camXs, self.halfmem_coord_Rs, self.halfmem_coord_cams, agg=True) if feed['set_num'] != 1: summ_writer.summ_occ('occ_sup/occ_sup', occRs_sup, reduce_axes=[2]) summ_writer.summ_occ('occ_sup/free_sup', freeRs_sup, reduce_axes=[2]) summ_writer.summ_occs('occ_sup/freeXs_sup', torch.unbind(freeXs, dim=1), reduce_axes=[2]) summ_writer.summ_occs('occ_sup/occXs_sup', torch.unbind(occXs_half, dim=1), reduce_axes=[2]) else: summ_writer.summ_occ('occ_sup_val/occ_sup', occRs_sup, reduce_axes=[2]) summ_writer.summ_occ('occ_sup_val/free_sup', freeRs_sup, reduce_axes=[2]) summ_writer.summ_occs('occ_sup_val/freeXs_sup', torch.unbind(freeXs, dim=1), reduce_axes=[2]) summ_writer.summ_occs('occ_sup_val/occXs_sup', torch.unbind(occXs_half, dim=1), reduce_axes=[2]) occ_loss, occRs_pred_ = self.occnet(featsRs_without_target_view, occRs_sup, freeRs_sup, torch.max(validRs[:, 1:], dim=1)[0], summ_writer, set_num=feed['set_num']) occRs_pred = __u(occRs_pred_) total_loss += occ_loss if self.config.do_view: assert self.config.do_feat # we warped the features into canonical view which is featR # now we resample to target view which is view (0) and decode # be sure not to pass in the features of the view to decode # use featRs_without_target_view as the features in the canonical view PH, PW = self.config.PH, self.config.PW sy = float(PH) / float(self.config.H) sx = float(PW) / float(self.config.W) assert (sx == 0.5) assert (sy == 0.5) # projpix_T_cams, are the intrinsics for the projection, just scale the true intrinsics pix_T_cams = feed["pix_T_cams"] projpix_T_cams = __u( utils.geom.scale_intrinsics(__p(pix_T_cams), sx, sy)) # now I will project the predicted feats to target view (warp) feat_projtarget_view = utils.vox.apply_pixX_T_memR_to_voxR( projpix_T_cams[:, 0], camXs_T_camRs[:, 0], self.halfmem_coord_Rs, featsRs_without_target_view, self.config.view_depth, PH, PW) rgb_X0 = utils.basic.downsample( rgb_camXs[:, 0], 2) ## NOTE: this is the ground truth view_loss, rgb_e, emb2D_e = self.viewnet(feat_projtarget_view, rgb_X0, summ_writer, set_num=feed['set_num']) total_loss += view_loss if self.config.do_det: emb3D_e_R = featsRs_without_target_view emb3D_g_R = featRs[:, 0, :, :, :, :] # 0 serves as the target view, which want to predict from the context self.axboxlist_memR = gt_boxesRMem_theta.clone() self.scorelist = scores # TODO: some parts of this network are confusing to me, understand it thoroughly detect_loss, boxlist_memR_e, scorelist_e, tidlist_e, sco, ove = self.detnet( self.axboxlist_memR, self.scorelist, emb3D_e_R, summ_writer) total_loss += detect_loss # unprojecting again from memory to ref cam coordinates boxlist_camR_e = utils.vox.convert_boxlist_memR_to_camR( boxlist_memR_e, self.halfmem_coord_Rs) boxlist_camR_g = utils.vox.convert_boxlist_memR_to_camR( self.axboxlist_memR, self.halfmem_coord_Rs) # from gt_corners see that boxlist_camR_g here is fine corners_max_g = torch.max(gt_boxesR_corners_, axis=1)[0] corners_min_g = torch.min(gt_boxesR_corners_, axis=1)[0] comp_center = corners_min_g + (corners_max_g - corners_min_g) / 2.0 comp_lengths = corners_max_g - corners_min_g from_above_camR = boxlist_camR_g.clone() assert np.allclose( from_above_camR[:, :, :3].squeeze(1).cpu().numpy(), comp_center.cpu().numpy(), atol=1e-5) assert np.allclose(from_above_camR[:, :, 3:6].squeeze(1).cpu().numpy(), comp_lengths.cpu().numpy(), atol=1e-5) summ_writer.summ_box_mem_on_mem( 'detnet/gt_boxesR_mem', unp_visRs, self.axboxlist_memR, self.scorelist, torch.ones([self.config.B, 1], dtype=torch.int32)) try: summ_writer.summ_box_mem_on_mem( 'detnet/pred_boxesR_mem', unp_visRs, boxlist_memR_e, scorelist_e, torch.ones_like(scorelist_e, dtype=torch.int32)) except Exception as e: print('------ will handle this later -------') ### plotting of the detection boxes #B, C, P = list(gt_boxesR_corners.shape) gt_box_camR = gt_boxesR_corners #.reshape(B, 1, C, P) origin_T_camRef = feed['origin_T_camRefs'][:, 0] camRef_T_origin = torch.inverse(origin_T_camRef) gt_box_camXs = utils.geom.apply_4x4_to_corners( camRef_T_origin, gt_box_camR) gt_ref_img = summ_writer.summ_box_by_corners( 'detnet/gt_box', feed['rgb_camRs'].squeeze(1), gt_box_camXs, self.scorelist, torch.ones([self.config.B, 1], dtype=torch.int32), feed['pix_T_cams'][:, 0, :, :], only_return=True) # plot gt on each input view gt_imgs = list() for plt_i in range(self.config.S): view = utils.geom.apply_4x4_to_corners( camXs_T_camRs[:, plt_i, :, :], gt_box_camR) gt_imgs.append( summ_writer.summ_box_by_corners( f'detnet/gt_view_{plt_i}', feed['rgb_camXs'][:, plt_i, :, :, :], view, self.scorelist, torch.ones([self.config.B, 1], dtype=torch.int32), feed['pix_T_cams'][:, plt_i, :, :], only_return=True)) gt_imgs.append(gt_ref_img) # pred_box_corners_adam = utils.geom.transform_boxes_to_corners(boxlist_camR_e) pred_box_corners_mem = utils.geom.transform_boxes_to_corners( boxlist_memR_e) pred_box_corners_adam = utils.geom.apply_4x4_to_corners( utils.coordTcoord.get_ref_T_mem(B, self.halfmem_coord_Rs), pred_box_corners_mem) pred_box_ref = utils.geom.apply_4x4_to_corners( camRef_T_origin, pred_box_corners_adam) pred_ref_img = summ_writer.summ_box_by_corners( 'detnet/pred_boxes', feed['rgb_camRs'].squeeze(1), pred_box_ref, scorelist_e.detach(), torch.ones_like(scorelist_e, dtype=torch.int32), feed['pix_T_cams'][:, 0, :, :], only_return=True) # plot pred on each input view pred_ims_list = list() for plt_i in range(self.config.S): view = utils.geom.apply_4x4_to_corners( camXs_T_camRs[:, plt_i, :, :], pred_box_corners_adam) pred_ims_list.append( summ_writer.summ_box_by_corners( f'detnet/pred_view_{plt_i}', feed['rgb_camXs'][:, plt_i, :, :, :], view, scorelist_e.detach(), torch.ones_like(scorelist_e, dtype=torch.int32), feed['pix_T_cams'][:, plt_i, :, :], only_return=True)) pred_ims_list.append(pred_ref_img) gt_imgs = torch.cat(gt_imgs, dim=0) pred_ims_list = torch.cat(pred_ims_list, dim=0) gt_grid = make_grid(gt_imgs, nrow=1) pred_img_grid = make_grid(pred_ims_list, nrow=1) summ_writer.summ_rgb('detnet/gt_grid', gt_grid.unsqueeze(0)) summ_writer.summ_rgb('detnet/pred_img_grid', pred_img_grid.unsqueeze(0)) ### plotting ends # overlap = [max(0, min(e0[i], e1[i]) - max(s0[i], s1[i])) for i in range(3)] # intersection = reduce(lambda x,y:x*y, overlap) # union = pow(box0[3], 3) + pow(box1[3], 3) - intersection # print(f'iou is : {intersection/union}') scorelist_g = self.scorelist[0:1].detach().cpu().numpy() boxlist_e = boxlist_camR_e[0:1].detach().cpu().numpy() boxlist_g = boxlist_camR_g[0:1].detach().cpu().numpy() scorelist_e = scorelist_e[0:1].detach().cpu().numpy() boxlist_e, boxlist_g, scorelist_e, scorelist_g = utils.evaluate.drop_invalid_boxes( boxlist_e, boxlist_g, scorelist_e, scorelist_g) ious = [0.3, 0.4, 0.5, 0.6, 0.7] maps, precisions_avg, scores_pred_val, ious_found = utils.evaluate.get_mAP( boxlist_e, scorelist_e, boxlist_g, ious) results['maps'] = maps results['ious'] = ious for ind, overlap in enumerate(ious): summ_writer.summ_scalar('ap/%.2f_iou' % overlap, maps[ind]) summ_writer.summ_scalar('precision/%.2f_iou' % overlap, precisions_avg[ind]) # do all of this computation if validation time is active # validation is only called after 50 step or validate after number if self.config.do_generate_data or (self.config.do_validation and feed['set_num'] == 1): # means I am executing the validation part of the code # Here I have the box in reference and memory is also in ref_frame # I should enter here while generating data bbox_in_ref_cam = feed['bbox_in_ref_cam'] # based on the batch size this would be B, N, 3 min_bounds = bbox_in_ref_cam[:, :, 0] max_bounds = bbox_in_ref_cam[:, :, -1] lengths = torch.abs(max_bounds - min_bounds) center = (max_bounds + min_bounds) * 0.5 # now form the box and then covert to lrt list B, N = self.config.B, 1 # since i have only one box # 9 is cx, cy, cz, lx, ly, lz, rx, ry, rz boxlist = torch.zeros(B, N, 9) # NOTE: Note: I am assuming here that N = 1 !!!!!! boxlist[:, :, :3] = center #.unsqueeze(1) boxlist[:, :, 3:6] = lengths #.unsqueeze(1) # convert it to lrt list, it contains box length and rt to go # from box coordinates to ref coordinate system. box_lrtlist = utils.geom.convert_boxlist_to_lrtlist(boxlist) # now this is already in the ref coordinate system which was not # the case with my previous use of the crop_zoom_from_mem func. # Hence I had previously included camR_T_camXs which is not req here presumably_object_tensor = utils.vox.crop_zoom_from_mem( featRs_with_target_view, self.feat_mem_coord_Rs, box_lrtlist[:, 0, :], 32, 32, 32) # NOTE: As of now I am not doing backprop through this Tensor so # no need to keep it in gpu anymore results['object_tensor'] = presumably_object_tensor.detach().cpu() results['record_name'] = feed['record'] # Add the plot of this to tensorboard, and also think how can you # visualize if the correct thing is being returned to you. summ_writer.summ_feats('crop_feats_val/object_tensor', tuple([presumably_object_tensor]), pca=True) # if hyp.do_metric_learning: # B, _, _, _, _ = presumably_object_tensor.shape # assert B >= 2, "Metric learner requires one positive and atleast one negative example to train" # metric_loss, _ = self.metric_learner(presumably_object_tensor,feed["object_id"]) # total_loss += metric_loss # summ_writer.summ_scalar('metric_learn/metric_loss', metric_loss.cpu().item()) summ_writer.summ_scalar('loss', total_loss.cpu().item()) return total_loss, results