def main(unused_argv):
  # Model definition.
  g = ops.Graph()
  with g.as_default():
    images = array_ops.placeholder(
        dtypes.float32, shape=(1, None, None, 3), name='input_image')
    inception.inception_resnet_v2_base(images)

  graph_io.write_graph(g.as_graph_def(), cmd_args.graph_dir,
                       cmd_args.graph_filename)
Пример #2
0
    def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithOutputStrideEight(
            self):
        batch_size = 5
        height, width = 299, 299

        inputs = tf.random_uniform((batch_size, height, width, 3))
        _, end_points = inception.inception_resnet_v2_base(
            inputs, final_endpoint='PreAuxLogits', output_stride=8)
        endpoints_shapes = {
            'Conv2d_1a_3x3': [5, 149, 149, 32],
            'Conv2d_2a_3x3': [5, 147, 147, 32],
            'Conv2d_2b_3x3': [5, 147, 147, 64],
            'MaxPool_3a_3x3': [5, 73, 73, 64],
            'Conv2d_3b_1x1': [5, 73, 73, 80],
            'Conv2d_4a_3x3': [5, 71, 71, 192],
            'MaxPool_5a_3x3': [5, 35, 35, 192],
            'Mixed_5b': [5, 35, 35, 320],
            'Mixed_6a': [5, 33, 33, 1088],
            'PreAuxLogits': [5, 33, 33, 1088]
        }

        self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
        for endpoint_name in endpoints_shapes:
            expected_shape = endpoints_shapes[endpoint_name]
            self.assertTrue(endpoint_name in end_points)
            self.assertListEqual(
                end_points[endpoint_name].get_shape().as_list(),
                expected_shape)
Пример #3
0
    def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithAlignedFeatureMaps(
            self):
        batch_size = 5
        height, width = 299, 299

        inputs = tf.random_uniform((batch_size, height, width, 3))
        _, end_points = inception.inception_resnet_v2_base(
            inputs, final_endpoint='PreAuxLogits', align_feature_maps=True)
        endpoints_shapes = {
            'Conv2d_1a_3x3': [5, 150, 150, 32],
            'Conv2d_2a_3x3': [5, 150, 150, 32],
            'Conv2d_2b_3x3': [5, 150, 150, 64],
            'MaxPool_3a_3x3': [5, 75, 75, 64],
            'Conv2d_3b_1x1': [5, 75, 75, 80],
            'Conv2d_4a_3x3': [5, 75, 75, 192],
            'MaxPool_5a_3x3': [5, 38, 38, 192],
            'Mixed_5b': [5, 38, 38, 320],
            'Mixed_6a': [5, 19, 19, 1088],
            'PreAuxLogits': [5, 19, 19, 1088]
        }

        self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
        for endpoint_name in endpoints_shapes:
            expected_shape = endpoints_shapes[endpoint_name]
            self.assertTrue(endpoint_name in end_points)
            self.assertListEqual(
                end_points[endpoint_name].get_shape().as_list(),
                expected_shape)
  def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithOutputStrideEight(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_resnet_v2_base(
        inputs, final_endpoint='PreAuxLogits', output_stride=8)
    endpoints_shapes = {'Conv2d_1a_3x3': [5, 149, 149, 32],
                        'Conv2d_2a_3x3': [5, 147, 147, 32],
                        'Conv2d_2b_3x3': [5, 147, 147, 64],
                        'MaxPool_3a_3x3': [5, 73, 73, 64],
                        'Conv2d_3b_1x1': [5, 73, 73, 80],
                        'Conv2d_4a_3x3': [5, 71, 71, 192],
                        'MaxPool_5a_3x3': [5, 35, 35, 192],
                        'Mixed_5b': [5, 35, 35, 320],
                        'Mixed_6a': [5, 33, 33, 1088],
                        'PreAuxLogits': [5, 33, 33, 1088]
                       }

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
  def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithAlignedFeatureMaps(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_resnet_v2_base(
        inputs, final_endpoint='PreAuxLogits', align_feature_maps=True)
    endpoints_shapes = {'Conv2d_1a_3x3': [5, 150, 150, 32],
                        'Conv2d_2a_3x3': [5, 150, 150, 32],
                        'Conv2d_2b_3x3': [5, 150, 150, 64],
                        'MaxPool_3a_3x3': [5, 75, 75, 64],
                        'Conv2d_3b_1x1': [5, 75, 75, 80],
                        'Conv2d_4a_3x3': [5, 75, 75, 192],
                        'MaxPool_5a_3x3': [5, 38, 38, 192],
                        'Mixed_5b': [5, 38, 38, 320],
                        'Mixed_6a': [5, 19, 19, 1088],
                        'PreAuxLogits': [5, 19, 19, 1088]
                       }

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
Пример #6
0
    def __call__(self, image_input, training=False, keep_prob=1.0):
        """
        Runs the CNN producing the embeddings and the gradients.
        :param image_input: Image input to produce embeddings for. [batch_size, image_size, image_size, 1]
        :param training: A flag indicating training or evaluation
        :param keep_prob: A tf placeholder of type tf.float32 indicating the amount of dropout applied
        :return: Embeddings of size [batch_size, 2048]
        """
        weight_decay = FLAGS.weight_decay
        activation_fn = tf.nn.relu

        end_points = {}
        with slim.arg_scope(
                inception.inception_resnet_v2_arg_scope(
                    weight_decay=FLAGS.weight_decay)):
            with tf.variable_scope("", reuse=self.reuse):
                with tf.variable_scope(None, 'InceptionResnetV2',
                                       [image_input]) as scope:
                    with slim.arg_scope([slim.batch_norm, slim.dropout],
                                        is_training=training):
                        net, end_points = inception.inception_resnet_v2_base(
                            image_input,
                            scope=scope,
                            activation_fn=activation_fn)
                        feature_map = end_points['PreAuxLogits']

                        self.reuse = True

        return feature_map
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random_uniform((batch_size, height, width, 3))
    net, end_points = inception.inception_resnet_v2_base(inputs)
    self.assertTrue(net.op.name.startswith('InceptionResnetV2/Conv2d_7b_1x1'))
    self.assertListEqual(net.get_shape().as_list(),
                         [batch_size, 8, 8, 1536])
    expected_endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
                          'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
                          'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_6a',
                          'PreAuxLogits', 'Mixed_7a', 'Conv2d_7b_1x1']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)
 def testBuildOnlyUptoFinalEndpoint(self):
   batch_size = 5
   height, width = 299, 299
   endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
                'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
                'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_6a',
                'PreAuxLogits', 'Mixed_7a', 'Conv2d_7b_1x1']
   for index, endpoint in enumerate(endpoints):
     with tf.Graph().as_default():
       inputs = tf.random_uniform((batch_size, height, width, 3))
       out_tensor, end_points = inception.inception_resnet_v2_base(
           inputs, final_endpoint=endpoint)
       if endpoint != 'PreAuxLogits':
         self.assertTrue(out_tensor.op.name.startswith(
             'InceptionResnetV2/' + endpoint))
       self.assertItemsEqual(endpoints[:index+1], end_points.keys())
Пример #9
0
def _construct_model(model_type='resnet_v1_50'):
  """Constructs model for the desired type of CNN.

  Args:
    model_type: Type of model to be used.

  Returns:
    end_points: A dictionary from components of the network to the corresponding
      activations.

  Raises:
    ValueError: If the model_type is not supported.
  """
  # Placeholder input.
  images = array_ops.placeholder(
      dtypes.float32, shape=(1, None, None, 3), name=_INPUT_NODE)

  # Construct model.
  if model_type == 'inception_resnet_v2':
    _, end_points = inception.inception_resnet_v2_base(images)
  elif model_type == 'inception_resnet_v2-same':
    _, end_points = inception.inception_resnet_v2_base(
        images, align_feature_maps=True)
  elif model_type == 'inception_v2':
    _, end_points = inception.inception_v2_base(images)
  elif model_type == 'inception_v2-no-separable-conv':
    _, end_points = inception.inception_v2_base(
        images, use_separable_conv=False)
  elif model_type == 'inception_v3':
    _, end_points = inception.inception_v3_base(images)
  elif model_type == 'inception_v4':
    _, end_points = inception.inception_v4_base(images)
  elif model_type == 'alexnet_v2':
    _, end_points = alexnet.alexnet_v2(images)
  elif model_type == 'vgg_a':
    _, end_points = vgg.vgg_a(images)
  elif model_type == 'vgg_16':
    _, end_points = vgg.vgg_16(images)
  elif model_type == 'mobilenet_v1':
    _, end_points = mobilenet_v1.mobilenet_v1_base(images)
  elif model_type == 'mobilenet_v1_075':
    _, end_points = mobilenet_v1.mobilenet_v1_base(
        images, depth_multiplier=0.75)
  elif model_type == 'resnet_v1_50':
    _, end_points = resnet_v1.resnet_v1_50(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v1_101':
    _, end_points = resnet_v1.resnet_v1_101(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v1_152':
    _, end_points = resnet_v1.resnet_v1_152(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v1_200':
    _, end_points = resnet_v1.resnet_v1_200(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v2_50':
    _, end_points = resnet_v2.resnet_v2_50(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v2_101':
    _, end_points = resnet_v2.resnet_v2_101(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v2_152':
    _, end_points = resnet_v2.resnet_v2_152(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v2_200':
    _, end_points = resnet_v2.resnet_v2_200(
        images, num_classes=None, is_training=False, global_pool=False)
  else:
    raise ValueError('Unsupported model_type %s.' % model_type)

  return end_points
Пример #10
0
def _construct_model(model_type='resnet_v1_50'):
    """Constructs model for the desired type of CNN.

  Args:
    model_type: Type of model to be used.

  Returns:
    end_points: A dictionary from components of the network to the corresponding
      activations.

  Raises:
    ValueError: If the model_type is not supported.
  """
    # Placeholder input.
    images = array_ops.placeholder(dtypes.float32,
                                   shape=(1, None, None, 3),
                                   name=_INPUT_NODE)

    # Construct model.
    if model_type == 'inception_resnet_v2':
        _, end_points = inception.inception_resnet_v2_base(images)
    elif model_type == 'inception_resnet_v2-same':
        _, end_points = inception.inception_resnet_v2_base(
            images, align_feature_maps=True)
    elif model_type == 'inception_v2':
        _, end_points = inception.inception_v2_base(images)
    elif model_type == 'inception_v2-no-separable-conv':
        _, end_points = inception.inception_v2_base(images,
                                                    use_separable_conv=False)
    elif model_type == 'inception_v3':
        _, end_points = inception.inception_v3_base(images)
    elif model_type == 'inception_v4':
        _, end_points = inception.inception_v4_base(images)
    elif model_type == 'alexnet_v2':
        _, end_points = alexnet.alexnet_v2(images)
    elif model_type == 'vgg_a':
        _, end_points = vgg.vgg_a(images)
    elif model_type == 'vgg_16':
        _, end_points = vgg.vgg_16(images)
    elif model_type == 'mobilenet_v1':
        _, end_points = mobilenet_v1.mobilenet_v1_base(images)
    elif model_type == 'mobilenet_v1_075':
        _, end_points = mobilenet_v1.mobilenet_v1_base(images,
                                                       depth_multiplier=0.75)
    elif model_type == 'resnet_v1_50':
        _, end_points = resnet_v1.resnet_v1_50(images,
                                               num_classes=None,
                                               is_training=False,
                                               global_pool=False)
    elif model_type == 'resnet_v1_101':
        _, end_points = resnet_v1.resnet_v1_101(images,
                                                num_classes=None,
                                                is_training=False,
                                                global_pool=False)
    elif model_type == 'resnet_v1_152':
        _, end_points = resnet_v1.resnet_v1_152(images,
                                                num_classes=None,
                                                is_training=False,
                                                global_pool=False)
    elif model_type == 'resnet_v1_200':
        _, end_points = resnet_v1.resnet_v1_200(images,
                                                num_classes=None,
                                                is_training=False,
                                                global_pool=False)
    elif model_type == 'resnet_v2_50':
        _, end_points = resnet_v2.resnet_v2_50(images,
                                               num_classes=None,
                                               is_training=False,
                                               global_pool=False)
    elif model_type == 'resnet_v2_101':
        _, end_points = resnet_v2.resnet_v2_101(images,
                                                num_classes=None,
                                                is_training=False,
                                                global_pool=False)
    elif model_type == 'resnet_v2_152':
        _, end_points = resnet_v2.resnet_v2_152(images,
                                                num_classes=None,
                                                is_training=False,
                                                global_pool=False)
    elif model_type == 'resnet_v2_200':
        _, end_points = resnet_v2.resnet_v2_200(images,
                                                num_classes=None,
                                                is_training=False,
                                                global_pool=False)
    else:
        raise ValueError('Unsupported model_type %s.' % model_type)

    return end_points
    else:
        with slim.arg_scope(arg_scope):
            slim_args = [slim.batch_norm, slim.dropout]
            with slim.arg_scope(slim_args, is_training=False):
                with tf.variable_scope(base_network, reuse=None) as scope:
                    if base_network == 'InceptionV3':
                        net, _ = inception.inception_v3_base(
                            images, final_endpoint=endpoint, scope=scope)
                    elif base_network == 'InceptionV3SE':
                        net, _ = inception.inception_v3_se_base(
                            images, final_endpoint=endpoint, scope=scope)
                    elif base_network == 'InceptionV4':
                        net, _ = inception.inception_v4_base(
                            images, final_endpoint=endpoint, scope=scope)
                    elif base_network == 'InceptionResnetV2':
                        net, _ = inception.inception_resnet_v2_base(
                            images, final_endpoint=endpoint, scope=scope)
                    elif base_network == 'InceptionResnetV2SE':
                        net, _ = inception.inception_resnet_v2_se_base(
                            images, final_endpoint=endpoint, scope=scope)
    net = tf.reduce_mean(net, [0,1,2])

    variable_averages = tf.train.ExponentialMovingAverage(
        moving_average_decay, tf_global_step)
    variables_to_restore = variable_averages.variables_to_restore()
    init_fn = slim.assign_from_checkpoint_fn(
        checkpoints_path, variables_to_restore)

    config_sess = tf.ConfigProto(allow_soft_placement=True)
    config_sess.gpu_options.allow_growth = True
    with tf.Session(config=config_sess) as sess:
        init_fn(sess)