Пример #1
0
    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args
        # 获得一种卷积方法,固定了image_size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # 获得标准化的参数
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # 网络主干部分开始
        # 设定输入进来的是RGB三通道图像
        in_channels = 3
        # 利用round_filters可以使得通道数在扩张的时候可以被8整除
        out_channels = round_filters(32, self._global_params)

        # 卷积+标准化
        self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # 对每个block的参数进行修改
        self._blocks = nn.ModuleList([])
        for i in range(len(self._blocks_args)):
            # 对每个block的参数进行修改,根据所选的efficient版本进行修改
            self._blocks_args[i] = self._blocks_args[i]._replace(
                input_filters=round_filters(self._blocks_args[i].input_filters, self._global_params),
                output_filters=round_filters(self._blocks_args[i].output_filters, self._global_params),
                num_repeat=round_repeats(self._blocks_args[i].num_repeat, self._global_params)
            )

            # 第一次大的Block里面的卷积需要考虑步长和输入进来的通道数!
            self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))

            if self._blocks_args[i].num_repeat > 1:
                self._blocks_args[i] = self._blocks_args[i]._replace(input_filters=self._blocks_args[i].output_filters,
                                                                     stride=1)
            for _ in range(self._blocks_args[i].num_repeat - 1):
                self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))

        # 增加了head部分
        in_channels = self._blocks_args[len(self._blocks_args) - 1].output_filters
        out_channels = round_filters(1280, self._global_params)  # 32倍降的输出通道

        # 卷积+标准化
        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # 最后的全连接层
        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        self._dropout = nn.Dropout(self._global_params.dropout_rate)
        self._fc = nn.Linear(out_channels, self._global_params.num_classes)
        # 进行swish激活函数
        self._swish = MemoryEfficientSwish()
Пример #2
0
 def from_pretrained(cls, model_name, load_weights=True, advprop=True, num_classes=1000, in_channels=3):
     model = cls.from_name(model_name, override_params={'num_classes': num_classes})
     if load_weights:
         load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000), advprop=advprop)
     if in_channels != 3:
         Conv2d = get_same_padding_conv2d(image_size = model._global_params.image_size)
         out_channels = round_filters(32, model._global_params)
         model._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
     return model
Пример #3
0
    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args
        # 获得一种卷积方法
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # 获得标准化的参数
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        #-------------------------------------------------#
        #   网络主干部分开始
        #   设定输入进来的是RGB三通道图像
        #   利用round_filters可以使得通道可以被8整除
        #-------------------------------------------------#
        in_channels = 3  
        out_channels = round_filters(32, self._global_params)

        #-------------------------------------------------#
        #   创建stem部分
        #-------------------------------------------------#
        self._conv_stem = Conv2d(
            in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(
            num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        #-------------------------------------------------#
        #   在这个地方对大结构块进行循环
        #-------------------------------------------------#
        self._blocks = nn.ModuleList([])
        for i in range(len(self._blocks_args)):
            #-------------------------------------------------------------#
            #   对每个block的参数进行修改,根据所选的efficient版本进行修改
            #-------------------------------------------------------------#
            self._blocks_args[i] = self._blocks_args[i]._replace(
                input_filters=round_filters(self._blocks_args[i].input_filters, self._global_params),
                output_filters=round_filters(self._blocks_args[i].output_filters, self._global_params),
                num_repeat=round_repeats(self._blocks_args[i].num_repeat, self._global_params)
            )

            #-------------------------------------------------------------#
            #   每个大结构块里面的第一个EfficientBlock
            #   都需要考虑步长和输入通道数
            #-------------------------------------------------------------#
            self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))

            if self._blocks_args[i].num_repeat > 1:
                self._blocks_args[i] = self._blocks_args[i]._replace(input_filters=self._blocks_args[i].output_filters, stride=1)

            #---------------------------------------------------------------#
            #   在利用第一个EfficientBlock进行通道数的调整或者高和宽的压缩后
            #   进行EfficientBlock的堆叠
            #---------------------------------------------------------------#
            for _ in range(self._blocks_args[i].num_repeat - 1):
                self._blocks.append(MBConvBlock(self._blocks_args[i], self._global_params))

        #----------------------------------------------------------------#
        #   这是efficientnet的尾部部分,在进行effcientdet构建的时候没用到
        #   只在利用efficientnet进行分类的时候用到。
        #----------------------------------------------------------------#
        in_channels = self._blocks_args[len(self._blocks_args)-1].output_filters
        out_channels = round_filters(1280, self._global_params)

        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        self._dropout = nn.Dropout(self._global_params.dropout_rate)
        self._fc = nn.Linear(out_channels, self._global_params.num_classes)

        self._swish = MemoryEfficientSwish()