Пример #1
0
                   aux_branch=aux_branch)
    if model_path != '':
        #------------------------------------------------------#
        #   载入预训练权重
        #------------------------------------------------------#
        print('Load weights {}.'.format(model_path))
        model.load_weights(model_path, by_name=True, skip_mismatch=True)

    if focal_loss:
        if dice_loss:
            loss = dice_loss_with_Focal_Loss(cls_weights)
        else:
            loss = Focal_Loss(cls_weights)
    else:
        if dice_loss:
            loss = dice_loss_with_CE(cls_weights)
        else:
            loss = CE(cls_weights)

    #---------------------------#
    #   读取数据集对应的txt
    #---------------------------#
    with open(
            os.path.join(VOCdevkit_path,
                         "VOC2007/ImageSets/Segmentation/train.txt"),
            "r") as f:
        train_lines = f.readlines()
    with open(
            os.path.join(VOCdevkit_path,
                         "VOC2007/ImageSets/Segmentation/val.txt"), "r") as f:
        val_lines = f.readlines()
Пример #2
0
    # 打开数据集的txt
    with open("VOCdevkit/VOC2007/ImageSets/Segmentation/val.txt", "r") as f:
        val_lines = f.readlines()

    if backbone == "mobilenet":
        freeze_layers = 146
    else:
        freeze_layers = 172

    for i in range(freeze_layers):
        model.layers[i].trainable = False
    print('Freeze the first {} layers of total {} layers.'.format(
        freeze_layers, len(model.layers)))

    loss = dice_loss_with_CE() if dice_loss else CE()
    #------------------------------------------------------#
    #   主干特征提取网络特征通用,冻结训练可以加快训练速度
    #   也可以在训练初期防止权值被破坏。
    #   Init_Epoch为起始世代
    #   Freeze_Epoch为冻结训练的世代
    #   Epoch总训练世代
    #   提示OOM或者显存不足请调小Batch_size
    #------------------------------------------------------#
    if True:
        Lr = 1e-4
        Init_Epoch = 0
        Freeze_Epoch = 50
        Batch_size = 8

        if Use_Data_Loader:
Пример #3
0
    #   权值文件位置
    #-------------------------------------------#
    model_path = "model_data/pspnet_mobilenetv2.h5"
    model.load_weights(model_path, by_name=True, skip_mismatch=True)

    # 打开训练集
    with open(os.path.join(dataset_path, "ImageSets/Segmentation/train.txt"),
              "r") as f:
        train_lines = f.readlines()

    # 打开验证集
    with open(os.path.join(dataset_path, "ImageSets/Segmentation/val.txt"),
              "r") as f:
        val_lines = f.readlines()

    loss = dice_loss_with_CE() if dice_loss else CE()
    #-------------------------------------------------------------------------------#
    #   训练参数的设置
    #   logging表示tensorboard的保存地址
    #   checkpoint用于设置权值保存的细节,period用于修改多少epoch保存一次
    #   reduce_lr用于设置学习率下降的方式
    #   early_stopping用于设定早停,val_loss多次不下降自动结束训练,patience:多少轮不发生变化才停止
    #-------------------------------------------------------------------------------#
    checkpoint_period = ModelCheckpoint(
        log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
        monitor='val_loss',
        save_weights_only=True,
        save_best_only=False,
        period=1)
    reduce_lr = ReduceLROnPlateau(monitor='val_loss',
                                  factor=0.5,
Пример #4
0
def main():

    args = get_arguments()

    h, w, c = map(int, args.input_size.split(','))
    input_size = (h, w, c)

    model = pspnet(args.num_classes, input_size, downsample_factor=downsample_factor,backbone=BACKBONE, aux_branch=aux_branch)
    model.summary()

    model.load_weights(args.model_path, by_name=True, skip_mismatch=True)

    tf.set_random_seed(args.random_seed)

    with open('list/cityscapes_train_list.txt', 'r') as f :
        train_lines = f.readlines()
    with open('list/cityscapes_val_list.txt', 'r') as f:
        val_lines = f.readlines()

    checkpoint_period = ModelCheckpoint(args.log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
                                        monitor='val_loss',save_weights_only=True, save_best_only=False,period=1)
    reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, verbose=1)
    early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)
    tensorboard = TensorBoard(log_dir=args.log_dir)

    for i in range(RESNET_FREEZE):
        model.layers[i].trainable = False
    print('Freeze the first {} layers of total {} layers.'.format(RESNET_FREEZE, len(model.layers),args.batch_size))

    if True:
        lr = 1e-4
        Init_Epoch = 0
        Freeze_Epoch = 50
        BATCH_SIZE = args.batch_size

        # model.compile(loss=dice_loss_with_CE() if dic_loss else CE(),optimizer=Adam(lr=lr),metrics=[f_score()])
        model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=lr), metrics=['accuracy'])

        gen = Generator(args.data_dir,args.data_list,BATCH_SIZE,input_size[:2],args.ignore_label,IMG_MEAN,aux_branch,len(train_lines),args.num_classes).generate()
        gen_val = Generator(args.data_dir,args.data_val,BATCH_SIZE,input_size[:2],args.ignore_label,IMG_MEAN,aux_branch,len(val_lines),args.num_classes).generate(False)
        model.fit_generator(gen,
                            steps_per_epoch=max(1, len(train_lines)//BATCH_SIZE)//4,
                            validation_data=gen_val,
                            validation_steps=max(1, len(val_lines)//BATCH_SIZE)//4,
                            epochs=Freeze_Epoch,
                            initial_epoch=Init_Epoch,
                            callbacks=[checkpoint_period, reduce_lr, tensorboard])

    for i in range(RESNET_FREEZE):
        model.layers[i].trainable = True

    if True:
        lr = 1e-5
        Freeze_Epoch = 50
        Unfreeze_Epoch = 100
        BATCH_SIZE = args.batch_size / 2

        model.compile(loss=dice_loss_with_CE() if dic_loss else CE(),
                      optimizer=Adam(lr=lr),
                      metrics=[f_score()])
        print(
            'Freeze the first {} layers of total {} layers.'.format(RESNET_FREEZE, len(model.layers), args.batch_size))

        gen = Generator(args.data_dir,args.data_list,BATCH_SIZE,input_size[:2],args.ignore_label,IMG_MEAN,aux_branch,len(train_lines),args.num_classes).generate()
        gen_val = Generator(args.data_dir,args.data_val,BATCH_SIZE,input_size[:2],args.ignore_label,IMG_MEAN,aux_branch,len(val_lines),args.num_classes).generate(False)

        model.fit_generator(gen,
                            steps_per_epoch=max(1, len(train_lines) // BATCH_SIZE),
                            validation_data=gen_val,
                            validation_steps=max(1, len(val_lines) // BATCH_SIZE),
                            epochs=Unfreeze_Epoch,
                            initial_epoch=Freeze_Epoch,
                            callbacks=[checkpoint_period, reduce_lr, tensorboard])