Пример #1
0
    def generate(self):
        self.score = 0.01
        self.iou = 0.5
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith(
            '.h5'), 'Keras model or weights must be a .h5 file.'

        #---------------------------------------------------#
        #   计算先验框的数量和种类的数量
        #---------------------------------------------------#
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)

        #---------------------------------------------------------#
        #   载入模型,如果原来的模型里已经包括了模型结构则直接载入。
        #   否则先构建模型再载入
        #---------------------------------------------------------#
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = yolo_body(Input(shape=(None, None, 3)),
                                        num_anchors // 3, num_classes,
                                        self.backbone, self.alpha)
            self.yolo_model.load_weights(self.model_path)
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # 画框设置不同的颜色
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))

        # 打乱颜色
        np.random.seed(10101)
        np.random.shuffle(self.colors)
        np.random.seed(None)

        self.input_image_shape = K.placeholder(shape=(2, ))

        #---------------------------------------------------------#
        #   在yolo_eval函数中,我们会对预测结果进行后处理
        #   后处理的内容包括,解码、非极大抑制、门限筛选等
        #---------------------------------------------------------#
        boxes, scores, classes = yolo_eval(
            self.yolo_model.output,
            self.anchors,
            num_classes,
            self.input_image_shape,
            max_boxes=self.max_boxes,
            score_threshold=self.score,
            iou_threshold=self.iou,
            letterbox_image=self.letterbox_image)
        return boxes, scores, classes
Пример #2
0
    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith(
            '.h5'), 'Keras model or weights must be a .h5 file.'

        # 计算anchor数量
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)

        # 载入模型,如果原来的模型里已经包括了模型结构则直接载入。
        # 否则先构建模型再载入
        self.yolo_model = yolo_body(Input(shape=(None, None, 3)),
                                    num_anchors // 3, num_classes)
        self.yolo_model.load_weights(self.model_path)

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # 画框设置不同的颜色
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))

        # 打乱颜色
        np.random.seed(10101)
        np.random.shuffle(self.colors)
        np.random.seed(None)

        if self.eager:
            self.input_image_shape = Input([
                2,
            ], batch_size=1)
            inputs = [*self.yolo_model.output, self.input_image_shape]
            outputs = Lambda(yolo_eval,
                             output_shape=(1, ),
                             name='yolo_eval',
                             arguments={
                                 'anchors': self.anchors,
                                 'num_classes': len(self.class_names),
                                 'image_shape': self.model_image_size,
                                 'score_threshold': self.score,
                                 'eager': True,
                                 'max_boxes': self.max_boxes
                             })(inputs)
            self.yolo_model = Model(
                [self.yolo_model.input, self.input_image_shape], outputs)
        else:
            self.input_image_shape = K.placeholder(shape=(2, ))

            self.boxes, self.scores, self.classes = yolo_eval(
                self.yolo_model.output,
                self.anchors,
                num_classes,
                self.input_image_shape,
                max_boxes=self.max_boxes,
                score_threshold=self.score,
                iou_threshold=self.iou)
Пример #3
0
    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith(
            '.h5'), 'Keras model or weights must be a .h5 file.'

        # 计算anchor数量
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)

        # 载入模型,如果原来的模型里已经包括了模型结构则直接载入。
        # 否则先构建模型再载入
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = yolo_body(Input(shape=(None, None, 3)),
                                        num_anchors // 3, num_classes)
            self.yolo_model.load_weights(self.model_path)
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # 画框设置不同的颜色
        #参数前带个*表示元组,
        #里是因为colorsys.hsv_to_rgb函数所需传入对象必须是元组,map函数则要求hsv_tuples为可迭代对象
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(
            map(lambda x: colorsys.hsv_to_rgb(*x),
                hsv_tuples))  # 将存有hsv颜色空间的颜色元组列表,转换成rgb颜色空间的颜色元组列表
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))

        # 打乱颜色
        np.random.seed(10101)
        np.random.shuffle(self.colors)
        np.random.seed(None)

        self.input_image_shape = K.placeholder(
            shape=(2, ))  # shape=(2, ) 表示行数是两行,列不定

        boxes, scores, classes = yolo_eval(
            self.yolo_model.output,
            self.anchors,  # 返回框的位置,得分,种类
            num_classes,
            self.input_image_shape,
            score_threshold=self.score,
            iou_threshold=self.iou)
        return boxes, scores, classes
    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
        
        #---------------------------------------------------#
        #   计算先验框的数量和种类的数量
        #---------------------------------------------------#
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)

        #---------------------------------------------------------#
        #   载入模型
        #---------------------------------------------------------#
        self.yolo_model = yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes, self.backbone, self.alpha)
        self.yolo_model.load_weights(self.model_path)

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # 画框设置不同的颜色
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))

        # 打乱颜色
        np.random.seed(10101)
        np.random.shuffle(self.colors)
        np.random.seed(None)

        #---------------------------------------------------------#
        #   在yolo_eval函数中,我们会对预测结果进行后处理
        #   后处理的内容包括,解码、非极大抑制、门限筛选等
        #---------------------------------------------------------#
        if self.eager:
            self.input_image_shape = Input([2,],batch_size=1)
            inputs = [*self.yolo_model.output, self.input_image_shape]
            outputs = Lambda(yolo_eval, output_shape=(1,), name='yolo_eval',
                arguments={'anchors': self.anchors, 'num_classes': len(self.class_names), 'image_shape': self.model_image_size, 
                'score_threshold': self.score, 'eager': True, 'max_boxes': self.max_boxes, 'letterbox_image': self.letterbox_image})(inputs)
            self.yolo_model = Model([self.yolo_model.input, self.input_image_shape], outputs)
        else:
            self.input_image_shape = K.placeholder(shape=(2, ))
            
            self.boxes, self.scores, self.classes = yolo_eval(self.yolo_model.output, self.anchors,
                    num_classes, self.input_image_shape, max_boxes=self.max_boxes,
                    score_threshold=self.score, iou_threshold=self.iou, letterbox_image = self.letterbox_image)
Пример #5
0
    def generate(self):
        score = CONFIG.DETECT.SCORE
        iou = CONFIG.DETECT.IOU

        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith(
            '.h5'), 'Keras model or weights must be a .h5 file.'

        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)

        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = yolo_body(Input(shape=(None, None, 3)),
                                        num_anchors // 3, num_classes)
            self.yolo_model.load_weights(self.model_path)
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                   num_anchors / len(self.yolo_model.output) * (num_classes + 5), \
                   'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # draw bounding boxes
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))

        # random color
        np.random.seed(10101)
        np.random.shuffle(self.colors)
        np.random.seed(None)

        self.input_image_shape = K.placeholder(shape=(2, ))

        boxes, scores, classes = yolo_eval(self.yolo_model.output,
                                           self.anchors,
                                           num_classes,
                                           self.input_image_shape,
                                           score_threshold=score,
                                           iou_threshold=iou,
                                           nms_method=self.nms_method,
                                           diou_threshold=self.diou_threshold)
        return boxes, scores, classes
Пример #6
0
    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        # Calculate the number of Anchor
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)

        # Load the model directly if the original model already contains the model structure.
        # Otherwise, build the model first and load it later
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes)
            self.yolo_model.load_weights(self.model_path)
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                   num_anchors / len(self.yolo_model.output) * (num_classes + 5), \
                   'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # The frame is set in different colors
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))

        # Disturb the color
        np.random.seed(10101)
        np.random.shuffle(self.colors)
        np.random.seed(None)

        self.input_image_shape = K.placeholder(shape=(2,))

        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                                           num_classes, self.input_image_shape,
                                           score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes
Пример #7
0
    def generate(self):
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)

        try:
            self.yolo_model = load_model(self.model_path, compile=False)
        except Exception:
            self.yolo_model = yolo_body(Input(shape=(None, None, 3)),
                                        num_anchors // 3, num_classes)
            self.yolo_model.load_weights(self.model_path)
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == num_anchors / len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(self.model_path))

        boxes, scores, classes = yolo_eval(self.yolo_model.output,
                                           self.anchors,
                                           num_classes,
                                           self.input_image_shape,
                                           score_threshold=self.score,
                                           iou_threshold=self.iou)
        return boxes, scores, classes