def train(request): print("begin") training_data, validation_data, test_data = mnl.load_data_wrapper() print("loaded ... starting training") ar,steps = net.SGD(training_data, 4, 10, 3.0, test_data=test_data) data = {'error':ar,'batch':steps} return JsonResponse(data)
import network.network as Network import network.mnist_loader as mnist_loader import pickle import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d, Axes3D import numpy as np from ripser import ripser from persim import plot_diagrams with open('network/trained_network.pkl', 'rb') as f: u = pickle._Unpickler(f) u.encoding = 'latin1' net = u.load() train_data, train_labels, test_data, test_labels = mnist_loader.load_data_wrapper( ) def predict(n): # Get the data from the test set x = test_data[n] # Print the prediction of the network print('Network output: \n' + str(np.round(net.feedforward(x), 2)) + '\n') print('Network prediction: ' + str(np.argmax(net.feedforward(x))) + '\n') print('Actual image: ') # Draw the image plt.figure() plt.imshow(x.reshape((28, 28)), cmap='Greys') plt.show()
import matplotlib.pyplot as plt import numpy as np #with open('network/trained_network.pkl', 'rb') as f: # net = cPickle.load(f, encoding = 'latin1') # PYTHON 3 WORK AROUND (uncomment this # and comment the above if using python 3) with open('network/trained_network.pkl', 'rb') as f: u = pickle._Unpickler(f) u.encoding = 'latin1' net = u.load() #net = cPickle.load(f, encoding = 'latin1') training_data, validation_data, test_data = mnist_loader.load_data_wrapper() def predict(n): # Get the data from the test set x = test_data[n][0] # Print the prediction of the network print('Network output: \n' + str(np.round(net.feedforward(x), 2)) + '\n') print('Network prediction: ' + str(np.argmax(net.feedforward(x))) + '\n') print('Actual image: ') # Draw the image plt.imshow(x.reshape((28,28)), cmap='Greys') # Replace the argument with any number between 0 and 9999 #predict(8384