Пример #1
0
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 128
        super(ResNet, self).__init__()
        self.conv1 = nn.Sequential(
            conv3x3(3, 64, stride=2),  #conv1.0
            mynn.Norm2d(64),  #conv1.1
            nn.ReLU(inplace=True),  #conv1.2
            conv3x3(64, 64),  #cpnv1.3
            mynn.Norm2d(64),  #conv1.4
            nn.ReLU(inplace=True),  #conv1.5
            conv3x3(64, 128))  #conv1.6
        self.bn1 = mynn.Norm2d(128)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode='fan_out',
                                        nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
Пример #2
0
 def __init__(self,
              inplanes,
              planes,
              stride=1,
              dilation=1,
              downsample=None,
              multi_grid=1):
     super(BottleneckICnet, self).__init__()
     self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
     self.bn1 = mynn.Norm2d(planes)
     self.conv2 = nn.Conv2d(planes,
                            planes,
                            kernel_size=3,
                            stride=stride,
                            padding=dilation * multi_grid,
                            dilation=dilation * multi_grid,
                            bias=False)
     self.bn2 = mynn.Norm2d(planes)
     self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
     self.bn3 = mynn.Norm2d(planes * 4)
     self.relu = nn.ReLU(inplace=False)
     self.relu_inplace = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.dilation = dilation
     self.stride = stride
Пример #3
0
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(BasicBlock, self).__init__()
     self.conv1 = conv3x3(inplanes, planes, stride)
     self.bn1 = mynn.Norm2d(planes)
     self.relu = nn.ReLU(inplace=True)
     self.conv2 = conv3x3(planes, planes)
     self.bn2 = mynn.Norm2d(planes)
     self.downsample = downsample
     self.stride = stride
Пример #4
0
    def _make_layer(self,
                    block,
                    planes,
                    blocks,
                    stride=1,
                    dilation=1,
                    multi_grid=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes,
                          planes * block.expansion,
                          kernel_size=1,
                          stride=stride,
                          bias=False), mynn.Norm2d(planes * block.expansion))

        layers = []
        generate_multi_grid = lambda index, grids: grids[index % len(
            grids)] if isinstance(grids, tuple) else 1
        layers.append(
            block(self.inplanes,
                  planes,
                  stride,
                  dilation=dilation,
                  downsample=downsample,
                  multi_grid=generate_multi_grid(0, multi_grid)))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(
                block(self.inplanes,
                      planes,
                      dilation=dilation,
                      multi_grid=generate_multi_grid(i, multi_grid)))

        return nn.Sequential(*layers)
Пример #5
0
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(Bottleneck, self).__init__()
     self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
     self.bn1 = mynn.Norm2d(planes)
     self.conv2 = nn.Conv2d(planes,
                            planes,
                            kernel_size=3,
                            stride=stride,
                            padding=1,
                            bias=False)
     self.bn2 = mynn.Norm2d(planes)
     self.conv3 = nn.Conv2d(planes,
                            planes * self.expansion,
                            kernel_size=1,
                            bias=False)
     self.bn3 = mynn.Norm2d(planes * self.expansion)
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
Пример #6
0
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes,
                          planes * block.expansion,
                          kernel_size=1,
                          stride=stride,
                          bias=False),
                mynn.Norm2d(planes * block.expansion),
            )
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for index in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)
Пример #7
0
def bnrelu(channels):
    """
    Single Layer BN and Relui
    """
    return nn.Sequential(mynn.Norm2d(channels), nn.ReLU(inplace=True))