def __init__(self, block, layers, num_classes=1000): self.inplanes = 128 super(ResNet, self).__init__() self.conv1 = nn.Sequential( conv3x3(3, 64, stride=2), #conv1.0 mynn.Norm2d(64), #conv1.1 nn.ReLU(inplace=True), #conv1.2 conv3x3(64, 64), #cpnv1.3 mynn.Norm2d(64), #conv1.4 nn.ReLU(inplace=True), #conv1.5 conv3x3(64, 128)) #conv1.6 self.bn1 = mynn.Norm2d(128) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0)
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, multi_grid=1): super(BottleneckICnet, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = mynn.Norm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=dilation * multi_grid, dilation=dilation * multi_grid, bias=False) self.bn2 = mynn.Norm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = mynn.Norm2d(planes * 4) self.relu = nn.ReLU(inplace=False) self.relu_inplace = nn.ReLU(inplace=True) self.downsample = downsample self.dilation = dilation self.stride = stride
def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = mynn.Norm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = mynn.Norm2d(planes) self.downsample = downsample self.stride = stride
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, multi_grid=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), mynn.Norm2d(planes * block.expansion)) layers = [] generate_multi_grid = lambda index, grids: grids[index % len( grids)] if isinstance(grids, tuple) else 1 layers.append( block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample, multi_grid=generate_multi_grid(0, multi_grid))) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block(self.inplanes, planes, dilation=dilation, multi_grid=generate_multi_grid(i, multi_grid))) return nn.Sequential(*layers)
def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = mynn.Norm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = mynn.Norm2d(planes) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = mynn.Norm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride
def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), mynn.Norm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for index in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers)
def bnrelu(channels): """ Single Layer BN and Relui """ return nn.Sequential(mynn.Norm2d(channels), nn.ReLU(inplace=True))