model.load_state_dict(checkpoint['state_dict']) model.eval() print(len(dataset)) save_dir = os.path.join(args.gradcam_path, args.type) if not os.path.isdir(save_dir): os.mkdir(save_dir) count = 0 for data in dataloader: for i in range(g_conf.BATCH_SIZE): controls = data['directions'] output = model.forward_branch( torch.squeeze(data['rgb']).cuda(), dataset.extract_inputs(data).cuda(), controls) activations = model.get_perception_activations( torch.squeeze(data['rgb']).cuda())[4].detach() # gradcam results in the suppmat are computed using brake output[i, 2].backward( ) # backprop from the steer (0), throttle (1) or brake (2) gradients = model.get_perception_gradients() pooled_gradients = torch.mean(torch.mean(torch.mean(gradients, 3), 2), 0) for j in range( 512): # number of feature maps = 512 for conv4, 256 for conv3 activations[:, j, :, :] *= pooled_gradients[j] heatmap = torch.mean(activations, dim=1).squeeze()
class CoILBaselineCEXP(Agent): def setup(self, path_to_config_file): yaml_conf, checkpoint_number, agent_name, encoder_params = checkpoint_parse_configuration_file( path_to_config_file) # Take the checkpoint name and load it if encoder_params is not None: self.checkpoint = torch.load( os.path.join( '/', os.path.join(*os.path.realpath(__file__).split('/')[:-2]), '_logs', yaml_conf.split('/')[-2], yaml_conf.split('/')[-1].split('.')[-2] + '_' + str(encoder_params['encoder_checkpoint']), 'checkpoints', str(checkpoint_number) + '.pth')) # Once the ENCODER_MODEL_CONFIGURATION was defined, we use the pre-trained encoder model to extract bottleneck Z and drive the E-t-E agent self.encoder_checkpoint = torch.load( os.path.join( '/', os.path.join(*os.path.realpath(__file__).split('/')[:-2]), '_logs', encoder_params['encoder_folder'], encoder_params['encoder_exp'], 'checkpoints', str(encoder_params['encoder_checkpoint']) + '.pth')) self.encoder_model = CoILModel(g_conf.ENCODER_MODEL_TYPE, g_conf.ENCODER_MODEL_CONFIGURATION) self.encoder_model.load_state_dict( self.encoder_checkpoint['state_dict']) self.encoder_model.cuda() self.encoder_model.eval() else: self.checkpoint = torch.load( os.path.join( '/', os.path.join(*os.path.realpath(__file__).split('/')[:-2]), '_logs', yaml_conf.split('/')[-2], yaml_conf.split('/')[-1].split('.')[-2], 'checkpoints', str(checkpoint_number) + '.pth')) # do the merge here # TODO THE MERGE IS REQUIRED DEPENDING ON THE SITUATION g_conf.immutable(False) merge_with_yaml( os.path.join( '/', os.path.join(*os.path.realpath(__file__).split('/')[:-2]), yaml_conf), encoder_params) self._model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION, g_conf.ENCODER_MODEL_CONFIGURATION) self.first_iter = True logging.info("Setup Model") # Load the model and prepare set it for evaluation self._model.load_state_dict(self.checkpoint['state_dict']) self._model.cuda() self._model.eval() self.latest_image = None self.latest_image_tensor = None # We add more time to the curve commands self._expand_command_front = 5 self._expand_command_back = 3 # TODO: Merge with Felipe's code self._msn = None self._lat_ref = 0 self._lon_ref = 0 # Check the agent name self._name = agent_name self.count = 0 def sensors(self): sensors = [{ 'type': 'sensor.camera.rgb', 'x': 2.0, 'y': 0.0, 'z': 1.40, 'roll': 0.0, 'pitch': -15.0, 'yaw': 0.0, 'width': 800, 'height': 600, 'fov': 100, 'id': 'rgb' }, { 'type': 'sensor.can_bus', 'reading_frequency': 25, 'id': 'can_bus' }, { 'type': 'sensor.other.gnss', 'x': 0.7, 'y': -0.4, 'z': 1.60, 'id': 'GPS' }] return sensors """ def make_state(self, exp): # state is divided in three parts, the speed, the angle_error, the high level command # Get the closest waypoint #waypoint, _ = self._get_current_wp_direction(exp._ego_actor.get_transform().location, exp._route) #norm, angle = compute_magnitude_angle(waypoint.location, exp._ego_actor.get_transform().location, # exp._ego_actor.get_transform().rotation.yaw) #return np.array([_get_forward_speed(exp._ego_actor) / 12.0, # Normalize to by dividing by 12 # angle / 180.0]) self._global_plan = exp._route input_data = exp._sensor_interface.get_data() # TODO this should be capilarized #if 'scenario' in g_conf.MEASUREMENTS_INPUTS: # scenario = convert_scenario_name_number(exp._environment_data['exp_measurements']) # input_data.update({'scenario': scenario}) return input_data """ def make_state(self, exp): """ This function also do the necessary processing of the state for the run step function :param exp: :return: """ self._global_plan = exp._route # we also need to get the latitute longitude ref # TODO this needs to be adpated for a CARLA challenge submission self._lat_ref = exp._lat_ref self._lon_ref = exp._lon_ref input_data = exp._sensor_interface.get_data() self._vehicle_pos = exp._ego_actor.get_transform().location # TODO this should be capilarized input_data.update( {'sensor_input': self._process_sensors(input_data['rgb'][1])}) if self._msn is not None: input_data.update( {'scenario': self._msn(input_data['sensor_input'])}) #if 'scenario' in g_conf.MEASUREMENTS_INPUTS: # scenario = convert_scenario_name_number(exp._environment_data['exp_measurements']) # print (" SCENARIO NUMBER ", scenario) # input_data.update({'scenario': scenario}) return input_data def run_step(self, input_data): # Get the current directions for following the route directions = self._get_current_direction(self._vehicle_pos) logging.debug(" Current direction %f ", directions) # Take the forward speed and normalize it for it to go from 0-1 network_input = input_data['can_bus'][1]['speed'] / g_conf.SPEED_FACTOR network_input = torch.cuda.FloatTensor([network_input]).unsqueeze(0) # TODO remove ifs #if 'scenario' in g_conf.MEASUREMENTS_INPUTS: # network_input = torch.cat((torch.cuda.FloatTensor([input_data['scenario']]), # network_input), 1) # Compute the forward pass processing the sensors got from CARLA. # TODO we start with an if but we can build a class hierarquical ! if g_conf.MODEL_TYPE in [ 'coil-icra', 'coil-icra-KLD', 'separate-supervised' ]: directions_tensor = torch.cuda.LongTensor([directions]) #print(" Directions ", int(directions)) if False: save_path = os.path.join('temp', 'ete_baseline') if not os.path.exists(save_path): os.mkdir(save_path) save_image( input_data['sensor_input'], os.path.join( save_path, 'run_input_' + str(self.count).zfill(5) + ".png")) self.count += 1 model_outputs = self._model.forward_branch( input_data['sensor_input'], network_input, directions_tensor) elif g_conf.MODEL_TYPE in ['coil-icra-VAE']: directions_tensor = torch.cuda.LongTensor([directions]) if g_conf.ENCODER_MODEL_TYPE in ['VAE']: if g_conf.LABELS_SUPERVISED: input = torch.cat( (input_data['sensor_input'], torch.zeros( 1, 1, 88, 200).cuda()), dim=1) recon_x, mu, _, z = self.encoder_model(input) else: recon_x, mu, _, z = self.encoder_model( input_data['sensor_input']) elif g_conf.ENCODER_MODEL_TYPE in ['Affordances']: mu, _ = self.encoder_model(input_data['sensor_input']) if False: save_path = os.path.join('temp', 'affordances_upperbound') if not os.path.exists(save_path): os.mkdir(save_path) if g_conf.LABELS_SUPERVISED: save_image( input_data['sensor_input'], os.path.join( save_path, 'run_input_' + str(self.count).zfill(5) + ".png")) split = torch.split(torch.squeeze(recon_x, dim=1), [3, 1], dim=1) save_image( split[0], os.path.join( save_path, 'run_recon_rgb_' + str(self.count).zfill(5) + ".png")) save_image( split[1], os.path.join( save_path, 'run_recon_labels_' + str(self.count).zfill(5) + ".png")) else: save_image( input_data['sensor_input'], os.path.join( save_path, 'run_input_' + str(self.count).zfill(5) + ".png")) #save_image(recon_x, os.path.join(save_path, 'run_recon_' + str(self.count).zfill(5) + ".png")) self.count += 1 model_outputs = self._model.forward_branch(mu, network_input, directions_tensor) #print(' frame', self.count) #print(' direction', directions_tensor) #print(' branch output', model_outputs) elif g_conf.MODEL_TYPE in [ 'separate-supervised-NoSpeed', 'coil-icra-NoSpeed' ]: directions_tensor = torch.cuda.LongTensor([directions]) if False: save_path = os.path.join('temp', 'ETE_resnet34_6') if not os.path.exists(save_path): os.mkdir(save_path) save_image( input_data['sensor_input'], os.path.join( save_path, 'run_input_' + str(self.count).zfill(5) + ".png")) self.count += 1 model_outputs = self._model.forward_branch( input_data['sensor_input'], directions_tensor) else: directions_tensor = torch.cuda.FloatTensor( encode_directions(directions)) model_outputs = self._model.forward( self._process_sensors(input_data['rgb'][1]), network_input, directions_tensor)[0] steer, throttle, brake = self._process_model_outputs(model_outputs[0]) control = carla.VehicleControl() control.steer = float(steer) control.throttle = float(throttle) control.brake = float(brake) logging.debug("Output %f %f %f " % (control.steer, control.throttle, control.brake)) if self.first_iter: coil_logger.add_message('Iterating', { "Checkpoint": self.checkpoint['iteration'], 'Agent': str(steer) }, self.checkpoint['iteration']) # There is the posibility to replace some of the predictions with oracle predictions. self.first_iter = False #print(['steer: ', control.steer, 'throttle: ', control.throttle, 'brake: ', control.brake]) return control def get_attentions(self, layers=None): """ Returns The activations obtained from the first layers of the latest iteration. """ if layers is None: layers = [0, 1, 2] if self.latest_image_tensor is None: raise ValueError( 'No step was ran yet. ' 'No image to compute the activations, Try Running ') all_layers = self._model.get_perception_layers( self.latest_image_tensor) cmap = plt.get_cmap('inferno') attentions = [] for layer in layers: y = all_layers[layer] att = torch.abs(y).mean(1)[0].data.cpu().numpy() att = att / att.max() att = cmap(att) att = np.delete(att, 3, 2) attentions.append(imresize(att, [88, 200])) return attentions def _process_sensors(self, sensor): sensor = sensor[:, :, 0:3] # BGRA->BRG drop alpha channel sensor = sensor[g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], :, :] # crop sensor = scipy.misc.imresize(sensor, (g_conf.SENSORS['rgb_central'][1], g_conf.SENSORS['rgb_central'][2])) self.latest_image = sensor sensor = np.swapaxes(sensor, 0, 1) sensor = np.transpose(sensor, (2, 1, 0)) sensor = torch.from_numpy(sensor / 255.0).type( torch.FloatTensor).cuda() image_input = sensor.unsqueeze(0) self.latest_image_tensor = image_input return image_input def _get_current_direction(self, vehicle_position): #print(" number of waypoints in global plan:", len(self._global_plan)) # for the current position and orientation try to get the closest one from the waypoints closest_id = 0 min_distance = 100000 for index in range(len(self._global_plan)): waypoint = self._global_plan[index][0] computed_distance = distance_vehicle(waypoint, vehicle_position) if computed_distance < min_distance: min_distance = computed_distance closest_id = index #print(" closest waypoint", closest_id) logging.debug("Closest waypoint {} dist {}".format( closest_id, min_distance)) direction = self._global_plan[closest_id][1] if direction == RoadOption.LEFT: direction = 3.0 elif direction == RoadOption.RIGHT: direction = 4.0 elif direction == RoadOption.STRAIGHT: direction = 5.0 else: direction = 2.0 return direction def _process_model_outputs(self, outputs): """ A bit of heuristics in the control, to eventually make car faster, for instance. Returns: """ steer, throttle, brake = outputs[0], outputs[1], outputs[2] if brake < 0.05: brake = 0.0 if throttle > brake: brake = 0.0 return steer, throttle, brake def _expand_commands(self, topological_plan): """ The idea is to make the intersection indications to last longer""" # O(2*N) algorithm , probably it is possible to do in O(N) with queues. # Get the index where curves start and end curves_start_end = [] inside = False start = -1 current_curve = RoadOption.LANEFOLLOW for index in range(len(topological_plan)): command = topological_plan[index][1] if command != RoadOption.LANEFOLLOW and not inside: inside = True start = index current_curve = command if command == RoadOption.LANEFOLLOW and inside: inside = False # End now is the index. curves_start_end.append([start, index, current_curve]) if start == -1: raise ValueError("End of curve without start") start = -1 for start_end_index_command in curves_start_end: start_index = start_end_index_command[0] end_index = start_end_index_command[1] command = start_end_index_command[2] # Add the backwards curves ( Before the begginning) for index in range(1, self._expand_command_front + 1): changed_index = start_index - index if changed_index > 0: topological_plan[changed_index] = ( topological_plan[changed_index][0], command) # add the onnes after the end for index in range(0, self._expand_command_back): changed_index = end_index + index if changed_index < len(topological_plan): topological_plan[changed_index] = ( topological_plan[changed_index][0], command) return topological_plan
def execute(gpu, exp_batch, exp_alias): # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join(exp_batch, exp_alias + '.yaml')) set_type_of_process('validation') sys.stdout = open(str(os.getpid()) + ".out", "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias, g_conf.PROCESS_NAME)[0] == "Finished": # TODO: print some cool summary or not ? return #Define the dataset. This structure is has the __get_item__ redefined in a way #that you can access the HDFILES positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.DATASET_NAME) dataset = CoILDataset(full_dataset, transform=transforms.Compose([transforms.ToTensor() ])) # Creates the sampler, this part is responsible for managing the keys. It divides # all keys depending on the measurements and produces a set of keys for each bach. # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. # TODO: batch size an number of workers go to some configuration file data_loader = torch.utils.data.DataLoader(dataset, batch_size=120, shuffle=False, num_workers=12, pin_memory=True) # TODO: here there is clearly a posibility to make a cool "conditioning" system. model = CoILModel(g_conf.MODEL_NAME) model.cuda() # TODO: The checkpoint will continue, so the logs should restart ??? OR continue were it was latest = get_latest_evaluated_checkpoint() if latest is None: # When nothing was tested, get latest returns none, we fix that. latest = 0 print(dataset.meta_data) while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE): if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE): latest = get_next_checkpoint(g_conf.TEST_SCHEDULE) checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(latest) + '.pth')) checkpoint_iteration = checkpoint['iteration'] print("Validation loaded ", checkpoint_iteration) for data in data_loader: input_data, labels = data control_position = np.where( dataset.meta_data[:, 0] == 'control')[0][0] speed_position = np.where( dataset.meta_data[:, 0] == 'speed_module')[0][0] print(torch.squeeze(input_data['rgb']).shape) print(control_position) print(speed_position) # Obs : Maybe we could also check for other branches ?? output = model.forward_branch( torch.squeeze(input_data['rgb']).cuda(), labels[:, speed_position, :].cuda(), labels[:, control_position, :].cuda()) # TODO: clean this squeeze and dimension things for i in range(input_data['rgb'].shape[0]): coil_logger.write_on_csv( checkpoint_iteration, [output[i][0], output[i][1], output[i][2]]) #loss = criterion(output, labels) #loss.backward() #optimizer.step() #shutil.copyfile(filename, 'model_best.pth.tar') else: time.sleep(1) print("Waiting for the next Validation")
def execute(gpu, exp_batch, exp_alias, validation_dataset, suppress_output): latest = None try: # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join('configs', exp_batch, f'{exp_alias}.yaml')) # The validation dataset is always fully loaded, so we fix a very high number of hours g_conf.NUMBER_OF_HOURS = 10000 set_type_of_process(process_type='validation', param=validation_dataset) # Save the output to a file if so desired if suppress_output: save_output(exp_alias) # Define the dataset. This structure has the __get_item__ redefined in a way # that you can access the HDFILES positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], validation_dataset) augmenter = Augmenter(None) # Definition of the dataset to be used. Preload name is just the validation data name dataset = CoILDataset(full_dataset, transform=augmenter, preload_name=validation_dataset, process_type='validation') # Creates the sampler, this part is responsible for managing the keys. It divides # all keys depending on the measurements and produces a set of keys for each bach. # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. data_loader = torch.utils.data.DataLoader( dataset, batch_size=g_conf.BATCH_SIZE, shuffle=False, num_workers=g_conf.NUMBER_OF_LOADING_WORKERS, pin_memory=True) model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION, g_conf.SENSORS).cuda() # The window used to keep track of the trainings l1_window = [] latest = get_latest_evaluated_checkpoint() if latest is not None: # When latest is noe l1_window = coil_logger.recover_loss_window( validation_dataset, None) # Keep track of the best loss and the iteration where it happens best_loss = 1000 best_loss_iter = 0 print(20 * '#') print('Starting validation!') print(20 * '#') # Check if the maximum checkpoint for validating has been reached while not maximum_checkpoint_reached(latest): # Wait until the next checkpoint is ready (assuming this is run whilst training the model) if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE): # Get next checkpoint for validation according to the test schedule and load it latest = get_next_checkpoint(g_conf.TEST_SCHEDULE) checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', f'{latest}.pth')) checkpoint_iteration = checkpoint['iteration'] model.load_state_dict(checkpoint['state_dict']) model.eval() # Turn off dropout and batchnorm (if any) print(f"Validation loaded, checkpoint {checkpoint_iteration}") # Main metric will be the used loss for training the network criterion = Loss(g_conf.LOSS_FUNCTION) checkpoint_average_loss = 0 # Counter iteration_on_checkpoint = 0 with torch.no_grad(): # save some computation/memory for data in data_loader: # Compute the forward pass on a batch from the validation dataset controls = data['directions'].cuda() img = torch.squeeze(data['rgb']).cuda() speed = dataset.extract_inputs( data).cuda() # this might not always be speed # For auxiliary metrics output = model.forward_branch(img, speed, controls) # For the loss function branches = model(img, speed) loss_function_params = { 'branches': branches, 'targets': dataset.extract_targets(data).cuda(), 'controls': controls, 'inputs': speed, 'branch_weights': g_conf.BRANCH_LOSS_WEIGHT, 'variable_weights': g_conf.VARIABLE_WEIGHT } # It could be either waypoints or direct control if 'waypoint1_angle' in g_conf.TARGETS: write_waypoints_output(checkpoint_iteration, output) else: write_regular_output(checkpoint_iteration, output) loss, _ = criterion(loss_function_params) loss = loss.data.tolist() # Log a random position position = random.randint( 0, len(output.data.tolist()) - 1) coil_logger.add_message( 'Iterating', { 'Checkpoint': latest, 'Iteration': f'{iteration_on_checkpoint * g_conf.BATCH_SIZE}/{len(dataset)}', f'Validation Loss ({g_conf.LOSS_FUNCTION})': loss, 'Output': output[position].data.tolist(), 'GroundTruth': dataset.extract_targets( data)[position].data.tolist(), 'Inputs': dataset.extract_inputs(data) [position].data.tolist() }, latest) # We get the average with a growing list of values # Thanks to John D. Cook: http://www.johndcook.com/blog/standard_deviation/ iteration_on_checkpoint += 1 checkpoint_average_loss += ( loss - checkpoint_average_loss) / iteration_on_checkpoint print( f"\rProgress: {100 * iteration_on_checkpoint * g_conf.BATCH_SIZE / len(dataset):3.4f}% - " f"Average Loss ({g_conf.LOSS_FUNCTION}): {checkpoint_average_loss:.16f}", end='') """ ######## Finish a round of validation, write results, wait for the next ######## """ coil_logger.add_scalar( f'Validation Loss ({g_conf.LOSS_FUNCTION})', checkpoint_average_loss, latest, True) # Let's visualize the distribution of the loss coil_logger.add_histogram( f'Validation Checkpoint Loss ({g_conf.LOSS_FUNCTION})', checkpoint_average_loss, latest) if checkpoint_average_loss < best_loss: best_loss = checkpoint_average_loss best_loss_iter = latest coil_logger.add_message( 'Iterating', { 'Summary': { 'Loss': checkpoint_average_loss, 'BestLoss': best_loss, 'BestLossCheckpoint': best_loss_iter }, 'Checkpoint': latest }, latest) l1_window.append(checkpoint_average_loss) coil_logger.write_on_error_csv(validation_dataset, checkpoint_average_loss, latest) # If we are using the finish when validation stops, we check the current checkpoint if g_conf.FINISH_ON_VALIDATION_STALE is not None: if dlib.count_steps_without_decrease(l1_window) > 3 and \ dlib.count_steps_without_decrease_robust(l1_window) > 3: coil_logger.write_stop(validation_dataset, latest) break else: latest = get_latest_evaluated_checkpoint() time.sleep(1) coil_logger.add_message('Loading', {'Message': 'Waiting Checkpoint'}) print("Waiting for the next Validation") print('\n' + 20 * '#') print('Finished validation!') print(20 * '#') coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest) except RuntimeError as e: if latest is not None: coil_logger.erase_csv(latest) coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest)
class CoILAgent(Agent): def __init__(self, checkpoint): Agent.__init__(self) self.checkpoint = checkpoint # We save the checkpoint for some interesting future use. self.model = CoILModel(g_conf.MODEL_NAME) self.model.load_state_dict(checkpoint['state_dict']) self.model.cuda() def run_step(self, measurements, sensor_data, directions, target): #control_agent = self._agent.run_step(measurements, None, target) speed = torch.cuda.FloatTensor( [measurements.player_measurements.forward_speed]).unsqueeze(0) print("Speed shape ", speed) directions_tensor = torch.cuda.LongTensor([directions]) model_outputs = self.model.forward_branch( self._process_sensors(sensor_data), speed, directions_tensor) print(model_outputs) steer, throttle, brake = self._process_model_outputs( model_outputs[0], measurements.player_measurements.forward_speed) #control = self.compute_action(, # , # directions) control = carla_protocol.Control() control.steer = steer control.throttle = throttle control.brake = brake # if self._auto_pilot: # control.steer = control_agent.steer # TODO: adapt the client side agent for the new version. ( PROBLEM ) #control.throttle = control_agent.throttle #control.brake = control_agent.brake # TODO: maybe change to a more meaningfull message ?? return control def _process_sensors(self, sensors): iteration = 0 for name, size in g_conf.SENSORS.items(): sensor = sensors[name].data[ g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], ...] if sensors[name].type == 'SemanticSegmentation': # TODO: the camera name has to be sincronized with what is in the experiment... sensor = join_classes(sensor) sensor = sensor[:, :, np.newaxis] image_transform = transforms.Compose([ transforms.ToTensor(), transforms.Resize((size[1], size[2]), interpolation=Image.NEAREST), iag.ToGPU(), iag.Multiply((1 / (number_of_seg_classes - 1))) ]) else: image_transform = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((size[1], size[2])), transforms.ToTensor(), transforms.Normalize((0, 0, 0), (255, 255, 255)), iag.ToGPU() ]) sensor = np.swapaxes(sensor, 0, 1) sensor = np.flip(sensor.transpose((2, 0, 1)), axis=0) if iteration == 0: image_input = image_transform(sensor) else: image_input = torch.cat((image_input, sensor), 0) iteration += 1 image_input = image_input.unsqueeze(0) return image_input def _process_model_outputs(self, outputs, speed): """ A bit of heuristics in the control, to eventually make car faster, for instance. Returns: """ steer, throttle, brake = outputs[0], outputs[1], outputs[2] if brake < 0.2: brake = 0.0 if throttle > brake: brake = 0.0 else: throttle = throttle * 2 if speed > 35.0 and brake == 0.0: throttle = 0.0 return steer, throttle, brake """ def compute_action(self, sensors, speed, direction): capture_time = time.time() sensor_pack = [] for i in range(len(sensors)): sensor = sensors[i] sensor = sensor[g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], :] if g_conf.param.SENSORS.keys()[i] == 'rgb': sensor = scipy.misc.imresize(sensor, [self._config.sensors_size[i][0], self._config.sensors_size[i][1]]) elif g_conf.param.SENSORS.keys()[i] == 'labels': sensor = scipy.misc.imresize(sensor, [self._config.sensors_size[i][0], self._config.sensors_size[i][1]], interp='nearest') sensor = join_classes(sensor) * int(255 / (number_of_seg_classes - 1)) sensor = sensor[:, :, np.newaxis] sensor_pack.append(sensor) if len(sensor_pack) > 1: image_input = np.concatenate((sensor_pack[0], sensor_pack[1]), axis=2) else: image_input = sensor_pack[0] image_input = image_input.astype(np.float32) image_input = np.multiply(image_input, 1.0 / 255.0) image_input = sensors[0] image_input = image_input.astype(np.float32) image_input = np.multiply(image_input, 1.0 / 255.0) # TODO: This will of course depend on the model , if it is based on sequences there are # TODO: different requirements #tensor = self.model(image_input) outputs = self.model.forward_branch(image_input, speed, direction) return control # ,machine_output_functions.get_intermediate_rep(image_input,speed,self._config,self._sess,self._train_manager) """ """
class MPSCAgent(AutonomousAgent): def setup(self, path_to_config_file): yaml_conf, checkpoint_number = checkpoint_parse_configuration_file(path_to_config_file) # Take the checkpoint name and load it checkpoint = torch.load(os.path.join('/', os.path.join(*os.path.realpath(__file__).split('/')[:-2]), '_logs', yaml_conf.split('/')[-2], yaml_conf.split('/')[-1].split('.')[-2] , 'checkpoints', str(checkpoint_number) + '.pth')) # merge the specific agent config with global config _g_conf merge_with_yaml(os.path.join('/', os.path.join(*os.path.realpath(__file__).split('/')[:-2]), yaml_conf)) self.checkpoint = checkpoint # We save the checkpoint for some interesting future use. # TODO: retrain the model with MPSC self._model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) self.first_iter = True logging.info("Setup Model") # Load the model and prepare set it for evaluation self._model.load_state_dict(checkpoint['state_dict']) self._model.cuda() self._model.eval() self.latest_image = None self.latest_image_tensor = None # We add more time to the curve commands self._expand_command_front = 5 self._expand_command_back = 3 # check map waypoint format => carla_data_provider & http://carla.org/2018/11/16/release-0.9.1/ # e.g. from map.get_waypoint Waypoint(Transform(Location(x=338.763, y=226.453, z=0), Rotation(pitch=360, yaw=270.035, roll=0))) self.track = Track.ALL_SENSORS_HDMAP_WAYPOINTS # specify available track info, see autonomous_agent.py def sensors(self): # currently give the full suite of available sensors # check the config/installation of the sensors => https://carla.readthedocs.io/en/latest/cameras_and_sensors/ sensors = [{'type': 'sensor.camera.rgb', 'x': 0.7, 'y': 0.0, 'z': 1.60, 'roll':0.0, 'pitch':0.0, 'yaw': 0.0, 'width': 800, 'height': 600, 'fov':100, 'id': 'Center'}, {'type': 'sensor.camera.rgb', 'x': 0.7, 'y': -0.4, 'z': 1.60, 'roll': 0.0, 'pitch': 0.0, 'yaw': -45.0, 'width': 800, 'height': 600, 'fov': 100, 'id': 'Left'}, {'type': 'sensor.camera.rgb', 'x': 0.7, 'y': 0.4, 'z': 1.60, 'roll': 0.0, 'pitch': 0.0, 'yaw': 45.0, 'width': 800, 'height': 600, 'fov': 100, 'id': 'Right'}, {'type': 'sensor.lidar.ray_cast', 'x': 0.7, 'y': -0.4, 'z': 1.60, 'roll': 0.0, 'pitch': 0.0, 'yaw': -45.0, 'id': 'LIDAR'}, {'type': 'sensor.other.gnss', 'x': 0.7, 'y': -0.4, 'z': 1.60, 'id': 'GPS'}, {'type': 'sensor.can_bus', 'reading_frequency': 25, 'id': 'can_bus'}, {'type': 'sensor.hd_map', 'reading_frequency': 1, 'id': 'hdmap'}, ] return sensors def run_step(self, input_data, timestamp): # the core method # TODO # 1. request current localization # input_data is obtained from sensors. => autonomous_agent.py def __call__(self) for key, value in input_data.items(): print("input_data ", key, value) # # ======[Agent] Wallclock_time = 2019-07-08 14:26:54.522155 / Sim_time = 1.4500000216066837 # input_data key GPS (3755, array([49.00202793, 8.00463308, 1.58916414])) # input_data key can_bus (43, {'moi': 1.0, 'center_of_mass': {'x': 60.0, 'y': 0.0, 'z': -60.0}, 'linear_velocity': array([[<carla.libcarla.Vector3D object at 0x7fb4fa0e2348>, # <carla.libcarla.Vector3D object at 0x7fb4fa0e2450>, # <carla.libcarla.Vector3D object at 0x7fb4fa0e2608>], # [<carla.libcarla.Vector3D object at 0x7fb4fa0e22f0>, # <carla.libcarla.Vector3D object at 0x7fb4fa0e2870>, # <carla.libcarla.Vector3D object at 0x7fb4fa0e26b8>], # [<carla.libcarla.Vector3D object at 0x7fb4fa0e2500>, # <carla.libcarla.Vector3D object at 0x7fb4fa0e2818>, # <carla.libcarla.Vector3D object at 0x7fb4fa0ddfa8>]], dtype=object), 'speed': -1.6444947256841175e-06, 'lateral_speed': array([[<carla.libcarla.Vector3D object at 0x7fb4fa0e4ad8>, # <carla.libcarla.Vector3D object at 0x7fb4fa0e49d0>, # <carla.libcarla.Vector3D object at 0x7fb4fa0e23a0>], # [<carla.libcarla.Vector3D object at 0x7fb4fa0e48c8>, # <carla.libcarla.Vector3D object at 0x7fb4fa0e4ce8>, # <carla.libcarla.Vector3D object at 0x7fb4fa0e23f8>], # [<carla.libcarla.Vector3D object at 0x7fb4fa0e4d40>, # <carla.libcarla.Vector3D object at 0x7fb4fa0e4c90>, # <carla.libcarla.Vector3D object at 0x7fb4fa0e28c8>]], dtype=object), 'transform': <carla.libcarla.Transform object at 0x7fb4fa0de3f0>, 'damping_rate_zero_throttle_clutch_disengaged': 0.3499999940395355, 'max_rpm': 6000.0, 'clutch_strength': 10.0, 'drag_coefficient': 0.30000001192092896, 'linear_acceleration': array([[<carla.libcarla.Vector3D object at 0x7fb4fa0dd0e0>, # <carla.libcarla.Vector3D object at 0x7fb4fa0ddf50>, # <carla.libcarla.Vector3D object at 0x7fb4fa0d58c8>], # [<carla.libcarla.Vector3D object at 0x7fb4fa0dd088>, # <carla.libcarla.Vector3D object at 0x7fb4fa0dd138>, # <carla.libcarla.Vector3D object at 0x7fb4fa0d5088>], # [<carla.libcarla.Vector3D object at 0x7fb4fa0dd1e8>, # <carla.libcarla.Vector3D object at 0x7fb4fa0f6d98>, # <carla.libcarla.Vector3D object at 0x7fb4fa0d5920>]], dtype=object), 'damping_rate_full_throttle': 0.15000000596046448, 'use_gear_autobox': True, 'torque_curve': [{'x': 0.0, 'y': 400.0}, {'x': 1890.7607421875, 'y': 500.0}, {'x': 5729.57763671875, 'y': 400.0}], 'dimensions': {'width': 0.9279687404632568, 'height': 0.6399999856948853, 'length': 2.4543750286102295}, 'steering_curve': [{'x': 0.0, 'y': 1.0}, {'x': 20.0, 'y': 0.8999999761581421}, {'x': 60.0, 'y': 0.800000011920929}, {'x': 120.0, 'y': 0.699999988079071}], 'mass': 1850.0, 'wheels': [{'tire_friction': 3.5, 'steer_angle': 70.0, 'damping_rate': 0.25, 'disable_steering': False}, {'tire_friction': 3.5, 'steer_angle': 70.0, 'damping_rate': 0.25, 'disable_steering': False}, {'tire_friction': 3.5, 'steer_angle': 0.0, 'damping_rate': 0.25, 'disable_steering': False}, {'tire_friction': 3.5, 'steer_angle': 0.0, 'damping_rate': 0.25, 'disable_steering': False}]}) # input_data key rgb (3753, array([[[135, 118, 110, 255], # [135, 118, 110, 255], # [136, 119, 110, 255], # ..., # [[114, 108, 105, 255], # [110, 105, 102, 255], # [112, 106, 104, 255], # ..., # [118, 112, 109, 255], # [118, 112, 109, 255], # [121, 115, 113, 255]]], dtype=uint8)) # Direction RoadOption.LANEFOLLOW # ego_trans # Transform(Location(x=338.763, y=226.453, z=-0.0109183), Rotation(pitch=0.000136604, yaw=-89.9654, roll=-0.000274658)) # 1.9995784804148584/0.0 localization = input_data['GPS'] directions = self._get_current_direction(input_data['GPS'][1]) logging.debug("Directions {}".format(directions)) # 2. get recommended action from the NN controller (copy from CoILBaseline) # Take the forward speed and normalize it for it to go from 0-1 norm_speed = input_data['can_bus'][1]['speed'] / g_conf.SPEED_FACTOR norm_speed = torch.cuda.FloatTensor([norm_speed]).unsqueeze(0) directions_tensor = torch.cuda.LongTensor([directions]) # End-to-end part, feed in images from rgb sensor, then parse network output as controller # Compute the forward pass processing the sensors got from CARLA. model_outputs = self._model.forward_branch(self._process_sensors(input_data['rgb'][1]), norm_speed, directions_tensor) steer, throttle, brake = self._process_model_outputs(model_outputs[0]) # 3. use inner-loop to simulate/approximate vehicle model # save the NN output as vehicle control sim_control = carla.VehicleControl() sim_control.steer = float(steer) sim_control.throttle = float(throttle) sim_control.brake = float(brake) logging.debug("inner loop for sim_control", sim_control) # TODO # copy a "parallel world" and create a "virtual agent" that has the same state with ego_vehicle sim_world = self.world # TODO: check how to copy the world, roads info are necessary, the rest optional sim_ego = sim_world.create_ego_vehicle(current_ego_states) sim_world.agent_instance = getattr(sim_world.module_agent, sim_world.module_agent.__name__)(args.config) correct_sensors, error_message = sim_world.valid_sensors_configuration(sim_world.sim_agent, sim_world.track) # pass the sim_control to virtual agent and run T timesteps sim_ego.apply_control(sim_control) # use current model to predict the following state-action series MPSC_controls = [] # TODO: check where u should init it for i in range(T): sim_ego.run_step() # TODO def run_step, update for sim_ego sim_ego.update() # 4. use MPSC to check safety at each future timestep safe = MPSC.check_safety(sim_ego.state, safety_boundary) if not safe: # if not safe, obtain MPSC control output logging.debug("use MPSC controller") control = MPSC_control MPSC_controls.append(MPSC_control) # collect all "safe" o/p # 7. execute MPSC control and add it to new dataset break else: if i < T-1: continue else: # final step # if safe within all T timesteps, proceed to use NN control output logging.debug("use NN controller") control = sim_control # 8. retrain the network and/or do policy aggregation if len(MPSC_controls): self.model.train(self.model, MPSC_controls) logging.debug("Control output ", control) # There is the posibility to replace some of the predictions with oracle predictions. self.first_iter = False return control
class CoILAgent(object): def __init__(self, checkpoint, town_name, carla_version='0.84'): # Set the carla version that is going to be used by the interface self._carla_version = carla_version self.checkpoint = checkpoint # We save the checkpoint for some interesting future use. self._model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) self.first_iter = True # Load the model and prepare set it for evaluation self._model.load_state_dict(checkpoint['state_dict']) self._model.cuda() self._model.eval() # this entire segment is for loading models for ensemble evaluation - take care for the paths and checkpoints ''' self.weights = [0.25, 0.25, 0.25, 0.25] # simple ensemble self.model_ids = ['660000', '670000', '1070000', '2640000'] # model checkpoints self.models_dir = '/is/sg2/aprakash/Projects/carla_autonomous_driving/code/coiltraine/_logs/ensemble' self._ensemble_model_list = [] for i in range(len(self.model_ids)): curr_checkpoint = torch.load(self.models_dir+'/resnet34imnet10S1/checkpoints/'+self.model_ids[i]+'.pth') self._ensemble_model_list.append(CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)) self._ensemble_model_list[i].load_state_dict(curr_checkpoint['state_dict']) self._ensemble_model_list[i].cuda().eval() ''' self.latest_image = None self.latest_image_tensor = None # for image corruptions self.corruption_number = None self.severity = None if g_conf.USE_ORACLE or g_conf.USE_FULL_ORACLE: # for evaluating expert self.control_agent = CommandFollower(town_name) def run_step(self, measurements, sensor_data, directions, target, **kwargs): """ Run a step on the benchmark simulation Args: measurements: All the float measurements from CARLA ( Just speed is used) sensor_data: All the sensor data used on this benchmark directions: The directions, high level commands target: Final objective. Not used when the agent is predicting all outputs. Returns: Controls for the vehicle on the CARLA simulator. """ # only required if using corruptions module # self.corruption_number = kwargs.get('corruption_number', None) # self.severity = kwargs.get('severity', None) # Take the forward speed and normalize it for it to go from 0-1 norm_speed = measurements.player_measurements.forward_speed / g_conf.SPEED_FACTOR norm_speed = torch.cuda.FloatTensor([norm_speed]).unsqueeze(0) directions_tensor = torch.cuda.LongTensor([directions]) # Compute the forward pass processing the sensors got from CARLA. model_outputs = self._model.forward_branch(self._process_sensors(sensor_data), norm_speed, directions_tensor) # run forward pass using felipe model # model_outputs_felipe = self._model_felipe.forward_branch(self._process_sensors(sensor_data), norm_speed, # directions_tensor) # model_outputs[0] = torch.FloatTensor([(model_outputs[0][i].item()+model_outputs_felipe[0][i].item())/2.0 for i in range(3)]).cuda() steer, throttle, brake = self._process_model_outputs(model_outputs[0]) # steer_f, throttle_f, brake_f = self._process_model_outputs(model_outputs_felipe[0]) # ensemble ''' steer_c = [] throttle_c = [] brake_c = [] for i in range(len(self.model_ids)): mo = self._ensemble_model_list[i].forward_branch(self._process_sensors(sensor_data), norm_speed, directions_tensor) s, t, b = self._process_model_outputs(mo[0]) steer_c.append(s) throttle_c.append(t) brake_c.append(b) ''' if self._carla_version == '0.9': import carla control = carla.VehicleControl() else: control = VehicleControl() # single model control.steer = float(steer) control.throttle = float(throttle) control.brake = float(brake) # ensemble # control.steer = float(np.average(steer_c, weights=self.weights)) # control.throttle = float(np.average(throttle_c, weights=self.weights)) # control.brake = float(np.average(brake_c, weights=self.weights)) # There is the posibility to replace some of the predictions with oracle predictions. if g_conf.USE_ORACLE: control.steer, control.throttle, control.brake = self._get_oracle_prediction( measurements, sensor_data, target) if self.first_iter: coil_logger.add_message('Iterating', {"Checkpoint": self.checkpoint['iteration'], 'Agent': str(control.steer)}, self.checkpoint['iteration']) self.first_iter = False return control # define run step for carla 9 def run_step_carla9(self, observations): norm_speed = np.linalg.norm(observations['velocity'])/g_conf.SPEED_FACTOR norm_speed = torch.cuda.FloatTensor([norm_speed]).unsqueeze(0) directions_tensor = torch.cuda.LongTensor([int(observations['command'])]) # print ('rgb: ', observations['big_cam'].shape) # print ('velocity: ', observations['velocity']) # print ('norm velocity: ', np.linalg.norm(observations['velocity'])) # print ('norm_speed: ', norm_speed.shape, norm_speed.item()) # print ('directions_tensor: ', directions_tensor.shape, directions_tensor.item()) model_outputs = self._model.forward_branch(self._process_sensors(observations), norm_speed, directions_tensor) steer, throttle, brake = self._process_model_outputs(model_outputs[0]) if self._carla_version == '0.9': import carla control = carla.VehicleControl() else: control = VehicleControl() # single model control.steer = float(steer) control.throttle = float(throttle) control.brake = float(brake) return control def get_attentions(self, layers=None): """ Returns The activations obtained from the first layers of the latest iteration. """ if layers is None: layers = [0, 1, 2] if self.latest_image_tensor is None: raise ValueError('No step was ran yet. ' 'No image to compute the activations, Try Running ') all_layers = self._model.get_perception_layers(self.latest_image_tensor) cmap = plt.get_cmap('inferno') attentions = [] for layer in layers: y = all_layers[layer] att = torch.abs(y).mean(1)[0].data.cpu().numpy() att = att / att.max() att = cmap(att) att = np.delete(att, 3, 2) attentions.append(imresize(att, [88, 200])) # attentions.append(np.array(Image.fromarray(sensor).resize((200, 88)))) return attentions def _process_sensors(self, sensors): iteration = 0 for name, size in g_conf.SENSORS.items(): if self._carla_version == '0.9': sensor = sensors[name][g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], ...] else: sensor = sensors[name].data[g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], ...] sensor = scipy.misc.imresize(sensor, (size[1], size[2])) # depreciated # sensor = np.array(Image.fromarray(sensor).resize((size[2], size[1]))) # for running corruptions ''' # corrupt the image here # print ('out of corruption: ', self.corruption_number, self.severity) if self.corruption_number is not None and self.severity is not None: # print ('in corruption: ', self.corruption_number, self.severity) sensor = corrupt(sensor, corruption_number=self.corruption_number, severity=self.severity+1) ''' self.latest_image = sensor sensor = np.swapaxes(sensor, 0, 1) sensor = np.transpose(sensor, (2, 1, 0)) sensor = torch.from_numpy(sensor / 255.0).type(torch.FloatTensor).cuda() if iteration == 0: image_input = sensor else: image_input = torch.cat((image_input, sensor), 0) iteration += 1 image_input = image_input.unsqueeze(0) self.latest_image_tensor = image_input return image_input def _process_model_outputs(self, outputs): """ A bit of heuristics in the control, to eventually make car faster, for instance. Returns: """ steer, throttle, brake = outputs[0].item(), outputs[1].item(), outputs[2].item() # print ('steer: ', steer, 'throttle: ', throttle, 'brake: ', brake) # these heuristics are a part of the original benchmark, evaluation doesn't run properly without these if brake < 0.05: brake = 0.0 if throttle > brake: brake = 0.0 # print ('steer after heuristic: ', steer, 'throttle after heuristic: ', throttle, 'brake after heuristic: ', brake) return steer, throttle, brake def _process_model_outputs_wp(self, outputs): """ A bit of heuristics in the control, to eventually make car faster, for instance. Returns: """ wpa1, wpa2, throttle, brake = outputs[3], outputs[4], outputs[1], outputs[2] if brake < 0.2: brake = 0.0 if throttle > brake: brake = 0.0 steer = 0.7 * wpa2 if steer > 0: steer = min(steer, 1) else: steer = max(steer, -1) return steer, throttle, brake def _get_oracle_prediction(self, measurements, sensor_data, target): # For the oracle, the current version of sensor data is not really relevant. control, _ = self.control_agent.run_step(measurements, sensor_data, [], target) return control.steer, control.throttle, control.brake
class CoILAgent(object): def __init__(self, checkpoint, town_name, carla_version='0.84', vae_params=None): # Set the carla version that is going to be used by the interface self._carla_version = carla_version self.checkpoint = checkpoint # We save the checkpoint for some interesting future use. self._model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) self.first_iter = True # Load the model and prepare set it for evaluation self._model.load_state_dict(checkpoint['state_dict']) self._model.cuda() self._model.eval() self._vae_params = vae_params if g_conf.VAE_MODEL_CONFIGURATION != {}: # adding VAE model self._VAE_model = CoILModel('VAE', g_conf.VAE_MODEL_CONFIGURATION) self._VAE_model.cuda() VAE_checkpoint = torch.load( os.path.join('_logs', vae_params['vae_folder'], vae_params['vae_exp'], 'checkpoints', str(vae_params['vae_checkpoint']) + '.pth')) print( "VAE model ", str(vae_params['vae_checkpoint']), " already loaded from ", os.path.join('_logs', vae_params['vae_folder'], vae_params['vae_exp'], 'checkpoints')) self._VAE_model.load_state_dict(VAE_checkpoint['state_dict']) self._VAE_model.eval() self.latest_image = None self.latest_image_tensor = None if g_conf.USE_ORACLE or g_conf.USE_FULL_ORACLE: self.control_agent = CommandFollower(town_name) def run_step(self, measurements, sensor_data, directions, target): """ Run a step on the benchmark simulation Args: measurements: All the float measurements from CARLA ( Just speed is used) sensor_data: All the sensor data used on this benchmark directions: The directions, high level commands target: Final objective. Not used when the agent is predicting all outputs. Returns: Controls for the vehicle on the CARLA simulator. """ # Take the forward speed and normalize it for it to go from 0-1 norm_speed = measurements.player_measurements.forward_speed / g_conf.SPEED_FACTOR norm_speed = torch.cuda.FloatTensor([norm_speed]).unsqueeze(0) directions_tensor = torch.cuda.LongTensor([directions]) # Compute the forward pass processing the sensors got from CARLA. if g_conf.VAE_MODEL_CONFIGURATION != {}: input_data = self._process_sensors(sensor_data) _, _, _, z = self._VAE_model(input_data) model_outputs = self._model.forward_branch(z, norm_speed, directions_tensor) else: model_outputs = self._model.forward_branch( self._process_sensors(sensor_data), norm_speed, directions_tensor) steer, throttle, brake = self._process_model_outputs(model_outputs[0]) if self._carla_version == '0.9': import carla control = carla.VehicleControl() else: control = VehicleControl() control.steer = float(steer) control.throttle = float(throttle) control.brake = float(brake) # There is the posibility to replace some of the predictions with oracle predictions. if g_conf.USE_ORACLE: _, control.throttle, control.brake = self._get_oracle_prediction( measurements, target) if self.first_iter: coil_logger.add_message('Iterating', { "Checkpoint": self.checkpoint['iteration'], 'Agent': str(steer) }, self.checkpoint['iteration']) self.first_iter = False return control def get_attentions(self, layers=None): """ Returns The activations obtained from the first layers of the latest iteration. """ if layers is None: layers = [0, 1, 2] if self.latest_image_tensor is None: raise ValueError( 'No step was ran yet. ' 'No image to compute the activations, Try Running ') all_layers = self._model.get_perception_layers( self.latest_image_tensor) cmap = plt.get_cmap('inferno') attentions = [] for layer in layers: y = all_layers[layer] att = torch.abs(y).mean(1)[0].data.cpu().numpy() att = att / att.max() att = cmap(att) att = np.delete(att, 3, 2) attentions.append(imresize(att, [88, 200])) return attentions def _process_sensors(self, sensors): iteration = 0 for name, size in g_conf.SENSORS.items(): if self._carla_version == '0.9': sensor = sensors[name][g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], ...] else: sensor = sensors[name].data[ g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], ...] sensor = scipy.misc.imresize(sensor, (size[1], size[2])) self.latest_image = sensor sensor = np.swapaxes(sensor, 0, 1) sensor = np.transpose(sensor, (2, 1, 0)) sensor = torch.from_numpy(sensor / 255.0).type( torch.FloatTensor).cuda() if iteration == 0: image_input = sensor else: image_input = torch.cat((image_input, sensor), 0) iteration += 1 image_input = image_input.unsqueeze(0) self.latest_image_tensor = image_input return image_input def _process_model_outputs(self, outputs): """ A bit of heuristics in the control, to eventually make car faster, for instance. Returns: """ steer, throttle, brake = outputs[0], outputs[1], outputs[2] if brake < 0.05: brake = 0.0 if throttle > brake: brake = 0.0 return steer, throttle, brake def _process_model_outputs_wp(self, outputs): """ A bit of heuristics in the control, to eventually make car faster, for instance. Returns: """ wpa1, wpa2, throttle, brake = outputs[3], outputs[4], outputs[ 1], outputs[2] if brake < 0.2: brake = 0.0 if throttle > brake: brake = 0.0 steer = 0.7 * wpa2 if steer > 0: steer = min(steer, 1) else: steer = max(steer, -1) return steer, throttle, brake def _get_oracle_prediction(self, measurements, target): # For the oracle, the current version of sensor data is not really relevant. control, _, _, _, _ = self.control_agent.run_step( measurements, [], [], target) return control.steer, control.throttle, control.brake
def execute(gpu, exp_batch, exp_alias, dataset_name, architecture, suppress_output): try: # We set the visible cuda devices torch.manual_seed(2) os.environ["CUDA_VISIBLE_DEVICES"] = gpu # Validation available for: # coil_unit (UNIT + task combined) # coil_icra (Also used for finetuned models) # wgangp_lsd (Our architecture) architecture_name = architecture # At this point the log file with the correct naming is created. if architecture_name == 'coil_unit': pass elif architecture_name == 'wgangp_lsd': merge_with_yaml( os.path.join('/home/rohitrishabh/CoilWGAN/configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('validation', dataset_name) elif architecture_name == 'coil_icra': merge_with_yaml( os.path.join( '/home/adas/CleanedCode/CoIL_Codes/coil_20-06/configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('validation', dataset_name) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": # TODO: print some cool summary or not ? return if not os.path.exists('_output_logs'): os.mkdir('_output_logs') if suppress_output: sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) #Define the dataset. This structure is has the __get_item__ redefined in a way #that you can access the HDFILES positions from the root directory as a in a vector. if dataset_name != []: full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name) else: full_dataset = os.environ["COIL_DATASET_PATH"] augmenter = Augmenter(None) dataset = CoILDataset(full_dataset, transform=augmenter) # Creates the sampler, this part is responsible for managing the keys. It divides # all keys depending on the measurements and produces a set of keys for each bach. # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. # TODO: batch size an number of workers go to some configuration file batchsize = 30 data_loader = torch.utils.data.DataLoader(dataset, batch_size=batchsize, shuffle=False, num_workers=1, pin_memory=True) # TODO: here there is clearly a posibility to make a cool "conditioning" system. if architecture_name == 'coil_unit': model_task, model_gen = CoILModel('coil_unit') model_task, model_gen = model_task.cuda(), model_gen.cuda() else: model = CoILModel(architecture_name) model.cuda() latest = 0 # print (dataset.meta_data) best_loss = 1000 best_error = 1000 best_loss_mini = 1000 best_loss_iter = 0 best_error_iter = 0 batch_size = 30 best_loss_ckpt = '' if architecture_name == 'coil_unit': ckpts = glob.glob('/home/rohitrishabh/UNIT_DA/outputs/' + exp_alias + '/checkpoints/gen*.pt') else: ckpts = glob.glob( os.path.join( '/home/adas/CleanedCode/CoIL_Codes/coil_20-06/_logs', exp_batch, exp_alias) + '/*.pth') if architecture_name == 'coil_unit': model_task.eval() model_gen.eval() else: model.eval() ckpts = sorted(ckpts) # TODO: refactor on the getting on the checkpoint organization needed for ckpt in ckpts: # if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE): # latest = get_next_checkpoint(g_conf.TEST_SCHEDULE) # ckpt = os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias # , 'checkpoints', str(latest) + '.pth') checkpoint = torch.load(ckpt) print("Validation loaded ", ckpt) if architecture_name == 'wgangp_lsd': print(ckpt, checkpoint['best_loss_iter_F']) model.load_state_dict(checkpoint['stateF_dict']) model.eval() elif architecture_name == 'coil_unit': model_task.load_state_dict(checkpoint['task']) model_gen.load_state_dict(checkpoint['b']) model_task.eval() model_gen.eval() elif architecture_name == 'coil_icra': model.load_state_dict(checkpoint['state_dict']) model.eval() accumulated_loss = 0 accumulated_error = 0 iteration_on_checkpoint = 0 datacount = 0 for data in data_loader: input_data, float_data = data controls = float_data[:, dataset.controls_position(), :] camera_angle = float_data[:, 26, :] camera_angle = camera_angle.cuda() steer = float_data[:, 0, :] steer = steer.cuda() speed = float_data[:, 10, :] speed = speed.cuda() time_use = 1.0 car_length = 3.0 extra_factor = 2.5 threshold = 1.0 pos = camera_angle > 0.0 pos = pos.type(torch.FloatTensor) neg = camera_angle <= 0.0 neg = neg.type(torch.FloatTensor) pos = pos.cuda() neg = neg.cuda() rad_camera_angle = math.pi * (torch.abs(camera_angle)) / 180.0 val = extra_factor * (torch.atan( (rad_camera_angle * car_length) / (time_use * speed + 0.05))) / 3.1415 steer -= pos * torch.min(val, torch.Tensor([0.6]).cuda()) steer += neg * torch.min(val, torch.Tensor([0.6]).cuda()) steer = steer.cpu() float_data[:, 0, :] = steer float_data[:, 0, :][float_data[:, 0, :] > 1.0] = 1.0 float_data[:, 0, :][float_data[:, 0, :] < -1.0] = -1.0 datacount += 1 control_position = 24 speed_position = 10 if architecture_name == 'wgangp_lsd': embed, output = model( torch.squeeze(input_data['rgb']).cuda(), float_data[:, speed_position, :].cuda()) loss = torch.sum( (output[0] - dataset.extract_targets(float_data).cuda() )**2).data.tolist() mean_error = torch.sum( torch.abs(output[0] - dataset.extract_targets(float_data).cuda()) ).data.tolist() elif architecture_name == 'coil_unit': embed, n_b = model_gen.encode( torch.squeeze(input_data['rgb']).cuda()) output = model_task( embed, Variable(float_data[:, speed_position, :]).cuda()) loss = torch.sum( (output[0].data - dataset.extract_targets(float_data).cuda())**2) mean_error = torch.sum( torch.abs(output[0].data - dataset.extract_targets(float_data).cuda())) elif architecture_name == 'coil_icra': output = model.forward_branch( torch.squeeze(input_data['rgb']).cuda(), float_data[:, speed_position, :].cuda(), float_data[:, control_position, :].cuda()) loss = torch.sum( (output - dataset.extract_targets(float_data).cuda() )**2).data.tolist() mean_error = torch.sum( torch.abs(output - dataset.extract_targets(float_data).cuda()) ).data.tolist() if loss < best_loss_mini: best_loss_mini = loss accumulated_error += mean_error accumulated_loss += loss # error = torch.abs(output[0] - dataset.extract_targets(float_data).cuda()) # Log a random position position = random.randint(0, len(float_data) - 1) iteration_on_checkpoint += 1 print(datacount, len(data_loader), accumulated_loss) checkpoint_average_loss = accumulated_loss / float( datacount * batchsize) checkpoint_average_error = accumulated_error / float( datacount * batchsize) if checkpoint_average_loss < best_loss: best_loss = checkpoint_average_loss best_loss_iter = latest best_loss_ckpt = ckpt if checkpoint_average_error < best_error: best_error = checkpoint_average_error best_error_iter = latest print("current loss", checkpoint_average_loss) print("best_loss", best_loss) coil_logger.add_message( 'Iterating', { 'Summary': { 'Error': checkpoint_average_error, 'Loss': checkpoint_average_loss, 'BestError': best_error, 'BestLoss': best_loss, 'BestLossCheckpoint': best_loss_iter, 'BestErrorCheckpoint': best_error_iter }, 'Checkpoint': latest }, latest) latest += 2000 coil_logger.add_message('Finished', {}) print("Best Validation Loss ckpt:", best_loss_ckpt) # TODO: DO ALL THE AMAZING LOGGING HERE, as a way to very the status in paralell. # THIS SHOULD BE AN INTERELY PARALLEL PROCESS except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'})
def execute(gpu, exp_batch, exp_alias, dataset_name, suppress_output): latest = None try: # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) # The validation dataset is always fully loaded, so we fix a very high number of hours g_conf.NUMBER_OF_HOURS = 10000 set_type_of_process('validation', dataset_name) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') if suppress_output: sys.stdout = open(os.path.join( '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join( '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) # Define the dataset. full_dataset = [ os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name) ] augmenter = Augmenter(None) # Definition of the dataset to be used. Preload name is just the validation data name dataset = CoILDataset(full_dataset, transform=augmenter, preload_names=[dataset_name]) # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. data_loader = torch.utils.data.DataLoader( dataset, batch_size=g_conf.BATCH_SIZE, shuffle=False, num_workers=g_conf.NUMBER_OF_LOADING_WORKERS, pin_memory=True) # Create model. model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) # The window used to keep track of the validation loss l1_window = [] # If we have evaluated a checkpoint, get the validation losses of all the previously # evaluated checkpoints (validation loss is used for early stopping) latest = get_latest_evaluated_checkpoint() if latest is not None: # When latest is noe l1_window = coil_logger.recover_loss_window(dataset_name, None) model.cuda() best_mse = 1000 best_error = 1000 best_mse_iter = 0 best_error_iter = 0 # Loop to validate all checkpoints as they are saved during training while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE): if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE): with torch.no_grad(): # Get and load latest checkpoint latest = get_next_checkpoint(g_conf.TEST_SCHEDULE) checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(latest) + '.pth')) checkpoint_iteration = checkpoint['iteration'] print("Validation loaded ", checkpoint_iteration) model.load_state_dict(checkpoint['state_dict']) model.eval() accumulated_mse = 0 accumulated_error = 0 iteration_on_checkpoint = 0 if g_conf.USE_REPRESENTATION_LOSS: accumulated_perception_rep_mse = 0 accumulated_speed_rep_mse = 0 accumulated_intentions_rep_mse = 0 accumulated_rep_mse = 0 accumulated_perception_rep_error = 0 accumulated_speed_rep_error = 0 accumulated_intentions_rep_error = 0 accumulated_rep_error = 0 # Validation loop for data in data_loader: # Compute the forward pass on a batch from the validation dataset controls = data['directions'] # Run model forward and get outputs # First case corresponds to squeeze network, second case corresponds to driving model without # mimicking losses, last case corresponds to mimic network if "seg" in g_conf.SENSORS.keys(): output = model.forward_branch( data, dataset.extract_inputs(data).cuda(), controls, dataset.extract_intentions(data).cuda()) elif not g_conf.USE_REPRESENTATION_LOSS: output = model.forward_branch( data, dataset.extract_inputs(data).cuda(), controls) else: output, intermediate_reps = model.forward_branch( data, dataset.extract_inputs(data).cuda(), controls) write_regular_output(checkpoint_iteration, output) # Compute control loss on current validation batch and accumulate it targets_to_use = dataset.extract_targets(data) mse = torch.mean( (output - targets_to_use.cuda())**2).data.tolist() mean_error = torch.mean( torch.abs(output - targets_to_use.cuda())).data.tolist() accumulated_error += mean_error accumulated_mse += mse error = torch.abs(output - targets_to_use.cuda()) # Compute mimicking losses on current validation batch and accumulate it if g_conf.USE_REPRESENTATION_LOSS: expert_reps = dataset.extract_representations(data) # First L1 losses (seg mask, speed, intention mimicking losses) if g_conf.USE_PERCEPTION_REP_LOSS: perception_rep_loss = torch.sum( torch.abs(intermediate_reps[0] - expert_reps[0].cuda()) ).data.tolist() / (3 * output.shape[0]) else: perception_rep_loss = 0 if g_conf.USE_SPEED_REP_LOSS: speed_rep_loss = torch.sum( torch.abs(intermediate_reps[1] - expert_reps[1].cuda()) ).data.tolist() / (3 * output.shape[0]) else: speed_rep_loss = 0 if g_conf.USE_INTENTION_REP_LOSS: intentions_rep_loss = torch.sum( torch.abs(intermediate_reps[2] - expert_reps[2].cuda()) ).data.tolist() / (3 * output.shape[0]) else: intentions_rep_loss = 0 rep_error = g_conf.REP_LOSS_WEIGHT * ( perception_rep_loss + speed_rep_loss + intentions_rep_loss) accumulated_perception_rep_error += perception_rep_loss accumulated_speed_rep_error += speed_rep_loss accumulated_intentions_rep_error += intentions_rep_loss accumulated_rep_error += rep_error # L2 losses now if g_conf.USE_PERCEPTION_REP_LOSS: perception_rep_loss = torch.sum( (intermediate_reps[0] - expert_reps[0].cuda())** 2).data.tolist() / (3 * output.shape[0]) else: perception_rep_loss = 0 if g_conf.USE_SPEED_REP_LOSS: speed_rep_loss = torch.sum( (intermediate_reps[1] - expert_reps[1].cuda())** 2).data.tolist() / (3 * output.shape[0]) else: speed_rep_loss = 0 if g_conf.USE_INTENTION_REP_LOSS: intentions_rep_loss = torch.sum( (intermediate_reps[2] - expert_reps[2].cuda())** 2).data.tolist() / (3 * output.shape[0]) else: intentions_rep_loss = 0 rep_mse = g_conf.REP_LOSS_WEIGHT * ( perception_rep_loss + speed_rep_loss + intentions_rep_loss) accumulated_perception_rep_mse += perception_rep_loss accumulated_speed_rep_mse += speed_rep_loss accumulated_intentions_rep_mse += intentions_rep_loss accumulated_rep_mse += rep_mse # Log a random position position = random.randint( 0, len(output.data.tolist()) - 1) # Logging if g_conf.USE_REPRESENTATION_LOSS: total_mse = mse + rep_mse total_error = mean_error + rep_error coil_logger.add_message( 'Iterating', { 'Checkpoint': latest, 'Iteration': (str(iteration_on_checkpoint * 120) + '/' + str(len(dataset))), 'MeanError': mean_error, 'MSE': mse, 'RepMeanError': rep_error, 'RepMSE': rep_mse, 'MeanTotalError': total_error, 'TotalMSE': total_mse, 'Output': output[position].data.tolist(), 'GroundTruth': targets_to_use[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs( data)[position].data.tolist() }, latest) else: coil_logger.add_message( 'Iterating', { 'Checkpoint': latest, 'Iteration': (str(iteration_on_checkpoint * 120) + '/' + str(len(dataset))), 'MeanError': mean_error, 'MSE': mse, 'Output': output[position].data.tolist(), 'GroundTruth': targets_to_use[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs( data)[position].data.tolist() }, latest) iteration_on_checkpoint += 1 if g_conf.USE_REPRESENTATION_LOSS: print("Iteration %d on Checkpoint %d : Error %f" % (iteration_on_checkpoint, checkpoint_iteration, total_error)) else: print("Iteration %d on Checkpoint %d : Error %f" % (iteration_on_checkpoint, checkpoint_iteration, mean_error)) """ ######## Finish a round of validation, write results, wait for the next ######## """ # Compute average L1 and L2 losses over whole round of validation and log them checkpoint_average_mse = accumulated_mse / ( len(data_loader)) checkpoint_average_error = accumulated_error / ( len(data_loader)) coil_logger.add_scalar('L2 Loss', checkpoint_average_mse, latest, True) coil_logger.add_scalar('Loss', checkpoint_average_error, latest, True) if g_conf.USE_REPRESENTATION_LOSS: checkpoint_average_perception_rep_mse = accumulated_perception_rep_mse / ( len(data_loader)) checkpoint_average_speed_rep_mse = accumulated_speed_rep_mse / ( len(data_loader)) checkpoint_average_intentions_rep_mse = accumulated_intentions_rep_mse / ( len(data_loader)) checkpoint_average_rep_mse = accumulated_rep_mse / ( len(data_loader)) checkpoint_average_total_mse = checkpoint_average_mse + checkpoint_average_rep_mse checkpoint_average_perception_rep_error = accumulated_perception_rep_error / ( len(data_loader)) checkpoint_average_speed_rep_error = accumulated_speed_rep_error / ( len(data_loader)) checkpoint_average_intentions_rep_error = accumulated_intentions_rep_error / ( len(data_loader)) checkpoint_average_rep_error = accumulated_rep_error / ( len(data_loader)) checkpoint_average_total_error = checkpoint_average_error + checkpoint_average_rep_mse # Log L1/L2 loss terms coil_logger.add_scalar( 'Perception Rep Loss', checkpoint_average_perception_rep_mse, latest, True) coil_logger.add_scalar( 'Speed Rep Loss', checkpoint_average_speed_rep_mse, latest, True) coil_logger.add_scalar( 'Intentions Rep Loss', checkpoint_average_intentions_rep_mse, latest, True) coil_logger.add_scalar('Overall Rep Loss', checkpoint_average_rep_mse, latest, True) coil_logger.add_scalar('Total L2 Loss', checkpoint_average_total_mse, latest, True) coil_logger.add_scalar( 'Perception Rep Error', checkpoint_average_perception_rep_error, latest, True) coil_logger.add_scalar( 'Speed Rep Error', checkpoint_average_speed_rep_error, latest, True) coil_logger.add_scalar( 'Intentions Rep Error', checkpoint_average_intentions_rep_error, latest, True) coil_logger.add_scalar('Total Rep Error', checkpoint_average_rep_error, latest, True) coil_logger.add_scalar('Total Loss', checkpoint_average_total_error, latest, True) else: checkpoint_average_total_mse = checkpoint_average_mse checkpoint_average_total_error = checkpoint_average_error if checkpoint_average_total_mse < best_mse: best_mse = checkpoint_average_total_mse best_mse_iter = latest if checkpoint_average_total_error < best_error: best_error = checkpoint_average_total_error best_error_iter = latest # Print for logging / to terminal validation results if g_conf.USE_REPRESENTATION_LOSS: coil_logger.add_message( 'Iterating', { 'Summary': { 'Control Error': checkpoint_average_error, 'Control Loss': checkpoint_average_mse, 'Rep Error': checkpoint_average_rep_error, 'Rep Loss': checkpoint_average_rep_mse, 'Error': checkpoint_average_total_error, 'Loss': checkpoint_average_total_mse, 'BestError': best_error, 'BestMSE': best_mse, 'BestMSECheckpoint': best_mse_iter, 'BestErrorCheckpoint': best_error_iter }, 'Checkpoint': latest }, latest) else: coil_logger.add_message( 'Iterating', { 'Summary': { 'Error': checkpoint_average_error, 'Loss': checkpoint_average_mse, 'BestError': best_error, 'BestMSE': best_mse, 'BestMSECheckpoint': best_mse_iter, 'BestErrorCheckpoint': best_error_iter }, 'Checkpoint': latest }, latest) # Save validation loss history (validation loss is used for early stopping) l1_window.append(checkpoint_average_total_error) coil_logger.write_on_error_csv( dataset_name, checkpoint_average_total_error) # Early stopping if g_conf.FINISH_ON_VALIDATION_STALE is not None: if dlib.count_steps_without_decrease(l1_window) > 3 and \ dlib.count_steps_without_decrease_robust(l1_window) > 3: coil_logger.write_stop(dataset_name, latest) break else: latest = get_latest_evaluated_checkpoint() time.sleep(1) coil_logger.add_message('Loading', {'Message': 'Waiting Checkpoint'}) print("Waiting for the next Validation") coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest) except RuntimeError as e: if latest is not None: coil_logger.erase_csv(latest) coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest)
class CoILAgent(object): def __init__(self, checkpoint, town_name, carla_version='0.84'): # Set the carla version that is going to be used by the interface self._carla_version = carla_version self.checkpoint = checkpoint # We save the checkpoint for some interesting future use. # Create model self._model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) self.first_iter = True # Load the model and prepare set it for evaluation self._model.load_state_dict(checkpoint['state_dict']) self._model.cuda() self._model.eval() # If we are evaluating squeeze model (so we are using ground truth seg mask), # also run the autopilot to get its stop intentions if g_conf.USE_ORACLE or g_conf.USE_FULL_ORACLE or "seg" in g_conf.SENSORS.keys(): self.control_agent = CommandFollower(town_name) def run_step(self, measurements, sensor_data, directions, target): """ Run a step on the benchmark simulation Args: measurements: All the float measurements from CARLA ( Just speed is used) sensor_data: All the sensor data used on this benchmark directions: The directions, high level commands target: Final objective. Not used when the agent is predicting all outputs. Returns: Controls for the vehicle on the CARLA simulator. """ # Get speed and high-level turning command # Take the forward speed and normalize it for it to go from 0-1 norm_speed = measurements.player_measurements.forward_speed / g_conf.SPEED_FACTOR norm_speed = torch.cuda.FloatTensor([norm_speed]).unsqueeze(0) directions_tensor = torch.cuda.LongTensor([directions]) # If we're evaluating squeeze network (so we are using ground truth seg mask) if "seg" in g_conf.SENSORS.keys(): # Run the autopilot agent to get stop intentions _, state = self.control_agent.run_step(measurements, [], [], target) inputs_vec = [] for input_name in g_conf.INTENTIONS: inputs_vec.append(float(state[input_name])) intentions = torch.cuda.FloatTensor(inputs_vec).unsqueeze(0) # Run squeeze network model_outputs = self._model.forward_branch(self._process_sensors(sensor_data), norm_speed, directions_tensor, intentions, benchmark=True) else: # Run driving model model_outputs = self._model.forward_branch(self._process_sensors(sensor_data), norm_speed, directions_tensor, benchmark=True) steer, throttle, brake = self._process_model_outputs(model_outputs[0]) if self._carla_version == '0.9': import carla control = carla.VehicleControl() else: control = VehicleControl() control.steer = float(steer) control.throttle = float(throttle) control.brake = float(brake) # There is the posibility to replace some of the predictions with oracle predictions. if g_conf.USE_ORACLE: _, control.throttle, control.brake = self._get_oracle_prediction( measurements, target) if self.first_iter: coil_logger.add_message('Iterating', {"Checkpoint": self.checkpoint['iteration'], 'Agent': str(steer)}, self.checkpoint['iteration']) self.first_iter = False return control def _process_sensors(self, sensors): iteration = 0 sensor_dict = {} for name, size in g_conf.SENSORS.items(): if self._carla_version == '0.9': sensor = sensors[name][g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], ...] else: sensor = sensors[name].data[g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], ...] # Process RGB image or CARLA seg mask if name == 'rgb': # Resize image, convert it to [0, 1] BGR image sensor = scipy.misc.imresize(sensor, (size[1], size[2])) sensor = sensor[:, :, ::-1] sensor = np.swapaxes(sensor, 0, 1) sensor = np.transpose(sensor, (2, 1, 0)) sensor = torch.from_numpy(sensor / 255.0).type(torch.FloatTensor) elif name == 'seg': seg = scipy.misc.imresize(sensor, (size[1], size[2]), 'nearest') # Re-map classes, mapping irrelevant classes to a "nuisance" class class_map = \ {0: 0, # None 1: 0, # Buildings -> None 2: 0, # Fences -> None 3: 0, # Other -> None 4: 1, # Pedestrians kept 5: 0, # Poles -> None 6: 2, # RoadLines kept 7: 3, # Roads kept 8: 2, # Sidewalks mapped to roadlines (both are boundaries of road) 9 : 0, # Vegetation -> None 10: 4, # Vehicles kept 11: 0, # Walls -> None 12: 5} # TrafficSigns kept (for traffic lights) new_seg = np.zeros((seg.shape[0], seg.shape[1])) # Remap classes for key, value in class_map.items(): new_seg[np.where(seg == key)] = value # One hot encode seg mask, for now hardcode max of class map values + 1 new_seg = np.eye(6)[new_seg.astype(np.int32)] new_seg = new_seg.transpose(2, 0, 1) new_seg = new_seg.astype(np.float) sensor = torch.from_numpy(new_seg).type(torch.FloatTensor) sensor = sensor.unsqueeze(0) sensor_dict[name] = sensor return sensor_dict def _process_model_outputs(self, outputs): """ A bit of heuristics in the control, to eventually make car faster, for instance. Returns: """ steer, throttle, brake = outputs[0], outputs[1], outputs[2] if brake < 0.05: brake = 0.0 if throttle > brake: brake = 0.0 return steer, throttle, brake def _get_oracle_prediction(self, measurements, target): # For the oracle, the current version of sensor data is not really relevant. control, _ = self.control_agent.run_step(measurements, [], [], target) return control.steer, control.throttle, control.brake
def execute(gpu, exp_batch='nocrash', exp_alias='resnet34imnet10S1', suppress_output=True, yaml_file=None): latest = None # try: # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. path_to_yaml_file = os.path.join('configs', exp_batch, exp_alias + '.yaml') if yaml_file is not None: path_to_yaml_file = os.path.join(yaml_file, exp_alias + '.yaml') merge_with_yaml(path_to_yaml_file) # The validation dataset is always fully loaded, so we fix a very high number of hours # g_conf.NUMBER_OF_HOURS = 10000 # removed to simplify code """ # commenting this segment to simplify code, uncomment if necessary set_type_of_process('validation', dataset_name) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') if suppress_output: sys.stdout = open(os.path.join('_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join('_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) """ # Define the dataset. This structure is has the __get_item__ redefined in a way # that you can access the HDFILES positions from the root directory as a in a vector. full_dataset = os.path.join( os.environ["COIL_DATASET_PATH"], g_conf.DART_COVMAT_DATA ) # dataset used for computing dart covariance matrix augmenter = Augmenter(None) # Definition of the dataset to be used. Preload name is just the validation data name print('full dataset path: ', full_dataset) dataset = CoILDataset(full_dataset, transform=augmenter, preload_name=g_conf.DART_COVMAT_DATA ) # specify DART_COVMAT_DATA in the config file # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. data_loader = torch.utils.data.DataLoader( dataset, batch_size=g_conf.BATCH_SIZE, shuffle=False, num_workers=g_conf.NUMBER_OF_LOADING_WORKERS, pin_memory=True) model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) """ removing this segment to simplify code # The window used to keep track of the trainings l1_window = [] latest = get_latest_evaluated_checkpoint() if latest is not None: # When latest is noe l1_window = coil_logger.recover_loss_window(g_conf.DART_COVMAT_DATA, None) """ model.cuda() best_mse = 1000 best_error = 1000 best_mse_iter = 0 best_error_iter = 0 # modified validation code from here to run a single model checkpoint # used for computing the covariance matrix with the DART model checkpoint checkpoint = torch.load( g_conf.DART_MODEL_CHECKPOINT ) # specify DART_MODEL_CHECKPOINT in the config file checkpoint_iteration = checkpoint['iteration'] print("Validation loaded ", checkpoint_iteration) model.load_state_dict(checkpoint['state_dict']) model.eval() accumulated_mse = 0 accumulated_error = 0 iteration_on_checkpoint = 0 # considering steer, throttle & brake so 3x3 matrix normalized_covariate_shift = torch.zeros(3, 3) print('data_loader size: ', len(data_loader)) for data in data_loader: # Compute the forward pass on a batch from the validation dataset controls = data['directions'] output = model.forward_branch( torch.squeeze(data['rgb']).cuda(), dataset.extract_inputs(data).cuda(), controls) """ removing this segment to simplify code # It could be either waypoints or direct control if 'waypoint1_angle' in g_conf.TARGETS: write_waypoints_output(checkpoint_iteration, output) else: write_regular_output(checkpoint_iteration, output) """ mse = torch.mean( (output - dataset.extract_targets(data).cuda())**2).data.tolist() mean_error = torch.mean( torch.abs(output - dataset.extract_targets(data).cuda())).data.tolist() accumulated_error += mean_error accumulated_mse += mse error = torch.abs(output - dataset.extract_targets(data).cuda()).data.cpu() ### covariate shift segment starts error = error.unsqueeze(dim=2) error_transpose = torch.transpose(error, 1, 2) # compute covariate shift covariate_shift = torch.matmul(error, error_transpose) # expand traj length tensor to Bx3x3 (considering steer, throttle & brake) traj_lengths = torch.stack([ torch.stack([data['current_traj_length'].squeeze(dim=1)] * 3, dim=1) ] * 3, dim=2) covariate_shift = covariate_shift / traj_lengths covariate_shift = torch.sum(covariate_shift, dim=0) # print ('current covariate shift: ', covariate_shift.shape) normalized_covariate_shift += covariate_shift ### covariate shift segment ends total_episodes = data['episode_count'][-1].data iteration_on_checkpoint += 1 if iteration_on_checkpoint % 50 == 0: print('iteration: ', iteration_on_checkpoint) print('total episodes: ', total_episodes) normalized_covariate_shift = normalized_covariate_shift / total_episodes print('normalized covariate shift: ', normalized_covariate_shift.shape, normalized_covariate_shift) # save the matrix to restart directly from the mat file # np.save(os.path.join(g_conf.COVARIANCE_MATRIX_PATH, 'covariance_matrix_%s.npy'%g_conf.DART_COVMATH_DATA), normalized_covariate_shift) return normalized_covariate_shift.numpy() '''
class CoILAgent(object): def __init__(self, checkpoint, town_name, carla_version='0.84'): # Set the carla version that is going to be used by the interface self._carla_version = carla_version self.checkpoint = checkpoint # We save the checkpoint for some interesting future use. self._model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) self.first_iter = True # Load the model and prepare set it for evaluation self._model.load_state_dict(checkpoint['state_dict']) self._model.cuda() self._model.eval() self.latest_image = None self.latest_image_tensor = None if g_conf.USE_ORACLE or g_conf.USE_FULL_ORACLE: self.control_agent = CommandFollower(town_name) def run_step(self, measurements, sensor_data, directions, target): """ Run a step on the benchmark simulation Args: measurements: All the float measurements from CARLA ( Just speed is used) sensor_data: All the sensor data used on this benchmark directions: The directions, high level commands target: Final objective. Not used when the agent is predicting all outputs. Returns: Controls for the vehicle on the CARLA simulator. """ # Take the forward speed and normalize it for it to go from 0-1 norm_speed = measurements.player_measurements.forward_speed / g_conf.SPEED_FACTOR norm_speed = torch.cuda.FloatTensor([norm_speed]).unsqueeze(0) directions_tensor = torch.cuda.LongTensor([directions]) # Compute the forward pass processing the sensors got from CARLA. model_outputs = self._model.forward_branch( self._process_sensors(sensor_data), norm_speed, directions_tensor) steer, throttle, brake = self._process_model_outputs(model_outputs[0]) if self._carla_version == '0.9': import carla control = carla.VehicleControl() else: control = VehicleControl() control.steer = float(steer) control.throttle = float(throttle) control.brake = float(brake) # There is the posibility to replace some of the predictions with oracle predictions. if g_conf.USE_ORACLE: _, control.throttle, control.brake = self._get_oracle_prediction( measurements, target) if self.first_iter: coil_logger.add_message('Iterating', { "Checkpoint": self.checkpoint['iteration'], 'Agent': str(steer) }, self.checkpoint['iteration']) self.first_iter = False return control def get_attentions(self, layers=None): """ Returns The activations obtained from the first layers of the latest iteration. """ if layers is None: layers = [0, 1, 2] if self.latest_image_tensor is None: raise ValueError( 'No step was ran yet. ' 'No image to compute the activations, Try Running ') all_layers = self._model.get_perception_layers( self.latest_image_tensor) cmap = plt.get_cmap('inferno') attentions = [] for layer in layers: y = all_layers[layer] att = torch.abs(y).mean(1)[0].data.cpu().numpy() att = att / att.max() att = cmap(att) att = np.delete(att, 3, 2) attentions.append(imresize(att, [150, 200])) return attentions def _process_sensors(self, sensors): colors = [[0, 0, 0], [70, 70, 70], [190, 153, 153], [250, 170, 160], [220, 20, 60], [153, 153, 153], [157, 234, 50], [128, 64, 128], [244, 35, 232], [107, 142, 35], [0, 0, 142], [102, 102, 156], [220, 220, 0]] def label_to_color_0(e): return colors[e][0] def label_to_color_1(e): return colors[e][1] def label_to_color_2(e): return colors[e][2] iteration = 0 for name, size in g_conf.SENSORS.items(): sensor = sensors[name].data if (sensor.shape == (600, 800)): labels = sensor tmp = np.zeros((600, 800, 3)) f0 = np.vectorize(label_to_color_0) f1 = np.vectorize(label_to_color_1) f2 = np.vectorize(label_to_color_2) tmp[:, :, 0] = f0(sensor) tmp[:, :, 1] = f1(sensor) tmp[:, :, 2] = f2(sensor) sensor = tmp sensor = scipy.misc.imresize(sensor, (size[1], size[2])) ##### Save sensor self.latest_image = sensor sensor = np.swapaxes(sensor, 0, 1) sensor = np.transpose(sensor, (2, 1, 0)) sensor = torch.from_numpy(sensor / 255.0).type( torch.FloatTensor).cuda() if iteration == 0: image_input = sensor else: image_input = torch.cat((image_input, sensor), 0) iteration += 1 image_input = image_input.unsqueeze(0) self.latest_image_tensor = image_input return image_input def _process_model_outputs(self, outputs): """ A bit of heuristics in the control, to eventually make car faster, for instance. Returns: """ steer, throttle, brake = outputs[0], outputs[1], outputs[2] if brake < 0.05: brake = 0.0 if throttle > brake: brake = 0.0 return steer, throttle, brake def _process_model_outputs_wp(self, outputs): """ A bit of heuristics in the control, to eventually make car faster, for instance. Returns: """ wpa1, wpa2, throttle, brake = outputs[3], outputs[4], outputs[ 1], outputs[2] if brake < 0.2: brake = 0.0 if throttle > brake: brake = 0.0 steer = 0.7 * wpa2 if steer > 0: steer = min(steer, 1) else: steer = max(steer, -1) return steer, throttle, brake def _get_oracle_prediction(self, measurements, target): # For the oracle, the current version of sensor data is not really relevant. control, _, _, _, _ = self.control_agent.run_step( measurements, [], [], target) return control.steer, control.throttle, control.brake
def execute(gpu, exp_batch, exp_alias, dataset_name, suppress_output): latest = None try: # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) # The validation dataset is always fully loaded, so we fix a very high number of hours g_conf.NUMBER_OF_HOURS = 10000 set_type_of_process('validation', dataset_name) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') if suppress_output: sys.stdout = open(os.path.join( '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join( '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) # Define the dataset. This structure is has the __get_item__ redefined in a way # that you can access the HDFILES positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name) augmenter = Augmenter(None) # Definition of the dataset to be used. Preload name is just the validation data name dataset = CoILDataset(full_dataset, transform=augmenter, preload_name=dataset_name) # Creates the sampler, this part is responsible for managing the keys. It divides # all keys depending on the measurements and produces a set of keys for each bach. # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. data_loader = torch.utils.data.DataLoader( dataset, batch_size=g_conf.BATCH_SIZE, shuffle=False, num_workers=g_conf.NUMBER_OF_LOADING_WORKERS, pin_memory=True) model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) # Set ERFnet for segmentation model_erf = ERFNet(20) model_erf = torch.nn.DataParallel(model_erf) model_erf = model_erf.cuda() print("LOAD ERFNet - validate") def load_my_state_dict( model, state_dict ): #custom function to load model when not all dict elements own_state = model.state_dict() for name, param in state_dict.items(): if name not in own_state: continue own_state[name].copy_(param) return model model_erf = load_my_state_dict( model_erf, torch.load(os.path.join('trained_models/erfnet_pretrained.pth'))) model_erf.eval() print("ERFNet and weights LOADED successfully") # The window used to keep track of the trainings l1_window = [] latest = get_latest_evaluated_checkpoint() if latest is not None: # When latest is noe l1_window = coil_logger.recover_loss_window(dataset_name, None) model.cuda() best_mse = 1000 best_error = 1000 best_mse_iter = 0 best_error_iter = 0 while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE): if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE): latest = get_next_checkpoint(g_conf.TEST_SCHEDULE) checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(latest) + '.pth')) checkpoint_iteration = checkpoint['iteration'] print("Validation loaded ", checkpoint_iteration) model.load_state_dict(checkpoint['state_dict']) model.eval() accumulated_mse = 0 accumulated_error = 0 iteration_on_checkpoint = 0 for data in data_loader: # Compute the forward pass on a batch from the validation dataset controls = data['directions'] # Seg batch rgbs = data['rgb'] with torch.no_grad(): outputs = model_erf(rgbs) labels = outputs.max(1)[1].byte().cpu().data seg_road = (labels == 0) seg_not_road = (labels != 0) seg = torch.stack((seg_road, seg_not_road), 1).float() output = model.forward_branch( torch.squeeze(seg).cuda(), dataset.extract_inputs(data).cuda(), controls) # output = model.foward_branch(torch.squeeze(rgbs).cuda(), # dataset.extract_inputs(data).cuda(),controls) # It could be either waypoints or direct control if 'waypoint1_angle' in g_conf.TARGETS: write_waypoints_output(checkpoint_iteration, output) else: write_regular_output(checkpoint_iteration, output) mse = torch.mean( (output - dataset.extract_targets(data).cuda() )**2).data.tolist() mean_error = torch.mean( torch.abs(output - dataset.extract_targets(data).cuda()) ).data.tolist() accumulated_error += mean_error accumulated_mse += mse error = torch.abs(output - dataset.extract_targets(data).cuda()) # Log a random position position = random.randint(0, len(output.data.tolist()) - 1) coil_logger.add_message( 'Iterating', { 'Checkpoint': latest, 'Iteration': (str(iteration_on_checkpoint * 120) + '/' + str(len(dataset))), 'MeanError': mean_error, 'MSE': mse, 'Output': output[position].data.tolist(), 'GroundTruth': dataset.extract_targets( data)[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs(data) [position].data.tolist() }, latest) iteration_on_checkpoint += 1 print("Iteration %d on Checkpoint %d : Error %f" % (iteration_on_checkpoint, checkpoint_iteration, mean_error)) """ ######## Finish a round of validation, write results, wait for the next ######## """ checkpoint_average_mse = accumulated_mse / (len(data_loader)) checkpoint_average_error = accumulated_error / ( len(data_loader)) coil_logger.add_scalar('Loss', checkpoint_average_mse, latest, True) coil_logger.add_scalar('Error', checkpoint_average_error, latest, True) if checkpoint_average_mse < best_mse: best_mse = checkpoint_average_mse best_mse_iter = latest if checkpoint_average_error < best_error: best_error = checkpoint_average_error best_error_iter = latest coil_logger.add_message( 'Iterating', { 'Summary': { 'Error': checkpoint_average_error, 'Loss': checkpoint_average_mse, 'BestError': best_error, 'BestMSE': best_mse, 'BestMSECheckpoint': best_mse_iter, 'BestErrorCheckpoint': best_error_iter }, 'Checkpoint': latest }, latest) l1_window.append(checkpoint_average_error) coil_logger.write_on_error_csv(dataset_name, checkpoint_average_error) # If we are using the finish when validation stops, we check the current if g_conf.FINISH_ON_VALIDATION_STALE is not None: if dlib.count_steps_without_decrease(l1_window) > 3 and \ dlib.count_steps_without_decrease_robust(l1_window) > 3: coil_logger.write_stop(dataset_name, latest) break else: latest = get_latest_evaluated_checkpoint() time.sleep(1) coil_logger.add_message('Loading', {'Message': 'Waiting Checkpoint'}) print("Waiting for the next Validation") coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest) except RuntimeError as e: if latest is not None: coil_logger.erase_csv(latest) coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest)
class CoILAgent(Agent): def __init__(self, checkpoint): #experiment_name='None', driver_conf=None, memory_fraction=0.18, #image_cut=[115, 510]): # use_planner=False,graph_file=None,map_file=None,augment_left_right=False,image_cut = [170,518]): Agent.__init__(self) # This should likely come from global #config_gpu = tf.ConfigProto() #config_gpu.gpu_options.visible_device_list = '0' #config_gpu.gpu_options.per_process_gpu_memory_fraction = memory_fraction #self._sess = tf.Session(config=config_gpu) # THIS DOES NOT WORK FOR FUSED PLUS LSTM #if self._config.number_frames_sequenced > self._config.number_frames_fused: # self._config_train.batch_size = self._config.number_frames_sequenced #else: # self._config_train.batch_size = self._config.number_frames_fused #self._train_manager = load_system(self._config_train) #self._config.train_segmentation = False self.model = CoILModel(g_conf.MODEL_NAME) self.model.load_state_dict(checkpoint['state_dict']) self.model.cuda() self.model.eval() #self.model.load_network(checkpoint) #self._sess.run(tf.global_variables_initializer()) #self._control_function = getattr(machine_output_functions, # self._train_manager._config.control_mode) # More elegant way to merge with autopilot #self._agent = Autopilot(ConfigAutopilot(driver_conf.city_name)) #self._image_cut = driver_conf.image_cut #self._auto_pilot = driver_conf.use_planner #self._recording = False #self._start_time = 0 def run_step(self, measurements, sensor_data, directions, target): self.model.eval() #control_agent = self._agent.run_step(measurements, None, target) print (" RUnning STEP ") speed = torch.cuda.FloatTensor([measurements.player_measurements.forward_speed]).unsqueeze(0) print("Speed is", speed) print ("Speed shape ", speed) directions_tensor = torch.cuda.LongTensor([directions]) model_outputs = self.model.forward_branch(self._process_sensors(sensor_data), speed, directions_tensor) print (model_outputs) steer, throttle, brake = self._process_model_outputs(model_outputs[0], measurements.player_measurements.forward_speed) #control = self.compute_action(, # , # directions) control = carla_protocol.Control() control.steer = steer control.throttle = throttle control.brake = brake # if self._auto_pilot: # control.steer = control_agent.steer # TODO: adapt the client side agent for the new version. ( PROBLEM ) #control.throttle = control_agent.throttle #control.brake = control_agent.brake # TODO: maybe change to a more meaningfull message ?? return control def _process_sensors(self, sensors): iteration = 0 for name, size in g_conf.SENSORS.items(): sensor = sensors[name].data[175:375, ...] #300*800*3 image_input = transform.resize(sensor, (size[1], size[2])) # transforms.Normalize([ 0.5315, 0.5521, 0.5205], [ 0.1960, 0.1810, 0.2217]) print ("Image pixL ", image_input[:10][0][0]) image_input = np.transpose(image_input, (2, 0, 1)) image_input = torch.from_numpy(image_input).type(torch.FloatTensor).cuda() print ("torch size", image_input.size()) img_np = np.uint8(np.transpose(image_input.cpu().numpy() * 255, (1 , 2, 0))) # plt.figure(1) # plt.subplot(1, 2, 1) # plt.imshow(sensor) # plt.subplot(1,2,2) # plt.imshow(img_np) # # # plt.show() # if sensors[name].type == 'SemanticSegmentation': # # TODO: the camera name has to be sincronized with what is in the experiment... # sensor = join_classes(sensor) # # sensor = sensor[:, :, np.newaxis] # # image_transform = transforms.Compose([transforms.ToTensor(), # transforms.Resize((size[1], size[2]), interpolation=Image.NEAREST), # iag.ToGPU(), iag.Multiply((1 / (number_of_seg_classes - 1)))]) # else: # # image_transform = transforms.Compose([transforms.ToPILImage(), # transforms.Resize((size[1], size[2])), # transforms.ToTensor(), transforms.Normalize((0, 0 ,0), (255, 255, 255)), # iag.ToGPU()]) # sensor = np.swapaxes(sensor, 0, 1) # print ("Sensor Previous SHape") # print (sensor.shape) # sensor = np.flip(sensor.transpose((2, 0, 1)), axis=0) # print ("Sensor Previous SHape PT2") # print (sensor.shape) # if iteration == 0: # image_input = image_transform(sensor) # else: # image_input = torch.cat((image_input, sensor), 0) iteration += 1 # print (image_input.shape) image_input = image_input.unsqueeze(0) print (image_input.shape) return image_input def _process_model_outputs(self,outputs, speed): """ A bit of heuristics in the control, to eventually make car faster, for instance. Returns: """ steer, throttle, brake = outputs[0], outputs[1], outputs[2] # if steer > 0.5: # throttle *= (1 - steer + 0.3) # steer += 0.3 # if steer > 1: # steer = 1 # if steer < -0.5: # throttle *= (1 + steer + 0.3) # steer -= 0.3 # if steer < -1: # steer = -1 # if brake < 0.2: # brake = 0.0 # if throttle > brake: brake = 0.0 # else: # throttle = throttle * 2 # if speed > 35.0 and brake == 0.0: # throttle = 0.0 print ("Steer", steer, "Throttle", throttle) return steer, throttle, brake """ def compute_action(self, sensors, speed, direction): capture_time = time.time() sensor_pack = [] for i in range(len(sensors)): sensor = sensors[i] sensor = sensor[g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], :] if g_conf.param.SENSORS.keys()[i] == 'rgb': sensor = scipy.misc.imresize(sensor, [self._config.sensors_size[i][0], self._config.sensors_size[i][1]]) elif g_conf.param.SENSORS.keys()[i] == 'labels': sensor = scipy.misc.imresize(sensor, [self._config.sensors_size[i][0], self._config.sensors_size[i][1]], interp='nearest') sensor = join_classes(sensor) * int(255 / (number_of_seg_classes - 1)) sensor = sensor[:, :, np.newaxis] sensor_pack.append(sensor) if len(sensor_pack) > 1: image_input = np.concatenate((sensor_pack[0], sensor_pack[1]), axis=2) else: image_input = sensor_pack[0] image_input = image_input.astype(np.float32) image_input = np.multiply(image_input, 1.0 / 255.0) image_input = sensors[0] image_input = image_input.astype(np.float32) image_input = np.multiply(image_input, 1.0 / 255.0) # TODO: This will of course depend on the model , if it is based on sequences there are # TODO: different requirements #tensor = self.model(image_input) outputs = self.model.forward_branch(image_input, speed, direction) return control # ,machine_output_functions.get_intermediate_rep(image_input,speed,self._config,self._sess,self._train_manager) """ """
def execute(gpu, exp_batch, exp_alias, dataset_name): # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = '0' # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('validation', dataset_name) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": # TODO: print some cool summary or not ? return #Define the dataset. This structure is has the __get_item__ redefined in a way #that you can access the HDFILES positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name) print(full_dataset) dataset = CoILDataset(full_dataset, transform=transforms.Compose([transforms.ToTensor() ])) # Creates the sampler, this part is responsible for managing the keys. It divides # all keys depending on the measurements and produces a set of keys for each bach. # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. # TODO: batch size an number of workers go to some configuration file data_loader = torch.utils.data.DataLoader(dataset, batch_size=120, shuffle=False, num_workers=12, pin_memory=True) # TODO: here there is clearly a posibility to make a cool "conditioning" system. model = CoILModel(g_conf.MODEL_NAME) model.cuda() model.eval() criterion = Loss() latest = get_latest_evaluated_checkpoint() if latest is None: # When nothing was tested, get latest returns none, we fix that. latest = 0 latest = 200000 best_loss = 1000.0 best_error = 1000.0 best_loss_iter = 0 best_error_iter = 0 print(dataset.meta_data[0][0]) for k in dataset.meta_data: k[0] = str(k[0], 'utf-8') print(dataset.meta_data[0][0]) cpts = glob.glob( '/home-local/rohitrishabh/coil_20-06/_logs/eccv/experiment_1/checkpoints/*.pth' ) # while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE): for ckpt in cpts: # if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE): # latest = get_next_checkpoint(g_conf.TEST_SCHEDULE) latest = int(ckpt[-10:-4]) # checkpoint = torch.load(os.path.join('_logs', exp_batch, exp_alias # , 'checkpoints', str(latest) + '.pth')) checkpoint = torch.load(ckpt) checkpoint_iteration = checkpoint['iteration'] print("Validation loaded ", checkpoint_iteration) accumulated_loss = 0.0 accumulated_error = 0.0 iteration_on_checkpoint = 0 for data in data_loader: input_data, float_data = data control_position = np.where( dataset.meta_data[:, 0] == 'control')[0][0] speed_position = np.where( dataset.meta_data[:, 0] == 'speed_module')[0][0] # print (torch.squeeze(input_data['rgb']).shape) # print (control_position) # print (speed_position) # Obs : Maybe we could also check for other branches ?? output = model.forward_branch( torch.squeeze(input_data['rgb']).cuda(), float_data[:, speed_position, :].cuda(), float_data[:, control_position, :].cuda()) for i in range(input_data['rgb'].shape[0]): coil_logger.write_on_csv( checkpoint_iteration, [output[i][0], output[i][1], output[i][2]]) # TODO: Change this a functional standard using the loss functions. loss = torch.mean( (output - dataset.extract_targets(float_data).cuda())**2).data.tolist() mean_error = torch.mean( torch.abs( output - dataset.extract_targets(float_data).cuda())).data.tolist() accumulated_error += mean_error accumulated_loss += loss error = torch.abs(output - dataset.extract_targets(float_data).cuda()) # Log a random position position = random.randint(0, len(float_data) - 1) #print (output[position].data.tolist()) coil_logger.add_message( 'Iterating in Validation', { 'Checkpoint': latest, 'Iteration': (str(iteration_on_checkpoint * 120) + '/' + str(len(dataset))), 'MeanError': mean_error, 'Loss': loss, 'Output': output[position].data.tolist(), 'GroundTruth': dataset.extract_targets(float_data) [position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs(float_data)[position].data.tolist() }, latest) iteration_on_checkpoint += 1 checkpoint_average_loss = accumulated_loss / len(dataset) checkpoint_average_error = accumulated_error / len(dataset) coil_logger.add_scalar('Loss', checkpoint_average_loss, latest) coil_logger.add_scalar('Error', checkpoint_average_error, latest) print('Loss: ', checkpoint_average_loss, "----Error: ", checkpoint_average_error) if checkpoint_average_loss < best_loss: best_loss = checkpoint_average_loss best_loss_iter = latest state = { 'state_dict': model.state_dict(), 'best_loss': best_loss, 'best_loss_iter': best_loss_iter } # TODO : maybe already summarize the best model ??? torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'best_model_l2' + '.pth')) if checkpoint_average_error < best_error: best_error = checkpoint_average_error best_error_iter = latest state = { 'state_dict': model.state_dict(), 'best_error': best_error, 'best_error_iter': best_error_iter } # TODO : maybe already summarize the best model ??? torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'best_model_l1' + '.pth')) print('Best Loss: ', best_loss, "Checkpoint", best_loss_iter) print('Best Error: ', best_error, "Checkpoint", best_error_iter) coil_logger.add_message( 'Iterating in Validation', { 'Summary': { 'Error': checkpoint_average_error, 'Loss': checkpoint_average_loss, 'BestError': best_error, 'BestLoss': best_loss, 'BestLossCheckpoint': best_loss_iter, 'BestErrorCheckpoint': best_error_iter }, 'Checkpoint': latest })
class CoILAgent(Agent): def __init__(self, checkpoint, architecture_name): #experiment_name='None', driver_conf=None, memory_fraction=0.18, #image_cut=[115, 510]): # use_planner=False,graph_file=None,map_file=None,augment_left_right=False,image_cut = [170,518]): Agent.__init__(self) # This should likely come from global #config_gpu = tf.ConfigProto() #config_gpu.gpu_options.visible_device_list = '0' #config_gpu.gpu_options.per_process_gpu_memory_fraction = memory_fraction #self._sess = tf.Session(config=config_gpu) # THIS DOES NOT WORK FOR FUSED PLUS LSTM #if self._config.number_frames_sequenced > self._config.number_frames_fused: # self._config_train.batch_size = self._config.number_frames_sequenced #else: # self._config_train.batch_size = self._config.number_frames_fused #self._train_manager = load_system(self._config_train) #self._config.train_segmentation = False self.architecture_name = architecture_name if architecture_name == 'coil_unit': self.model_task, self.model_gen = CoILModel('coil_unit') self.model_task, self.model_gen = self.model_task.cuda( ), self.model_gen.cuda() elif architecture_name == 'unit_task_only': self.model_task, self.model_gen = CoILModel('unit_task_only') self.model_task, self.model_gen = self.model_task.cuda( ), self.model_gen.cuda() else: self.model = CoILModel(architecture_name) self.model.cuda() if architecture_name == 'wgangp_lsd': # print(ckpt, checkpoint['best_loss_iter_F']) self.model.load_state_dict(checkpoint['stateF_dict']) self.model.eval() elif architecture_name == 'coil_unit': self.model_task.load_state_dict(checkpoint['task']) self.model_gen.load_state_dict(checkpoint['b']) self.model_task.eval() self.model_gen.eval() elif architecture_name == 'coil_icra': self.model.load_state_dict(checkpoint['state_dict']) self.model.eval() elif architecture_name == 'unit_task_only': self.model_task.load_state_dict(checkpoint['task_state_dict']) self.model_gen.load_state_dict(checkpoint['enc_state_dict']) self.model_task.eval() self.model_gen.eval() #self.model.load_network(checkpoint) #self._sess.run(tf.global_variables_initializer()) #self._control_function = getattr(machine_output_functions, # self._train_manager._config.control_mode) # More elegant way to merge with autopilot #self._agent = Autopilot(ConfigAutopilot(driver_conf.city_name)) #self._image_cut = driver_conf.image_cut #self._auto_pilot = driver_conf.use_planner #self._recording = False #self._start_time = 0 def run_step(self, measurements, sensor_data, directions, target): #control_agent = self._agent.run_step(measurements, None, target) print(" RUnning STEP ") speed = torch.cuda.FloatTensor( [measurements.player_measurements.forward_speed]).unsqueeze(0) print("Speed is", speed) print("Speed shape ", speed) directions_tensor = torch.cuda.LongTensor([directions]) # model_outputs = self.model.forward_branch(self._process_sensors(sensor_data), speed, # directions_tensor) if self.architecture_name == 'wgangp_lsd': embed, model_outputs = self.model( self._process_sensors(sensor_data), speed) elif self.architecture_name == 'coil_unit': embed, n_b = self.model_gen.encode( self._process_sensors(sensor_data)) model_outputs = self.model_task(embed, speed) elif self.architecture_name == 'unit_task_only': embed, n_b = self.model_gen.encode( self._process_sensors(sensor_data)) model_outputs = self.model_task(embed, speed) elif self.architecture_name == 'coil_icra': model_outputs = self.model.forward_branch( self._process_sensors(sensor_data), speed, directions_tensor) print(model_outputs) if self.architecture_name == 'coil_icra': steer, throttle, brake = self._process_model_outputs( model_outputs[0], measurements.player_measurements.forward_speed) else: steer, throttle, brake = self._process_model_outputs( model_outputs[0][0], measurements.player_measurements.forward_speed) control = carla_protocol.Control() control.steer = steer control.throttle = throttle control.brake = brake # if self._auto_pilot: # control.steer = control_agent.steer # TODO: adapt the client side agent for the new version. ( PROBLEM ) #control.throttle = control_agent.throttle #control.brake = control_agent.brake # TODO: maybe change to a more meaningfull message ?? return control def _process_sensors(self, sensors): iteration = 0 for name, size in g_conf.SENSORS.items(): sensor = sensors[name].data[140:260, ...] #300*800*3 image_input = transform.resize(sensor, (128, 128)) # transforms.Normalize([ 0.5315, 0.5521, 0.5205], [ 0.1960, 0.1810, 0.2217]) image_input = np.transpose(image_input, (2, 0, 1)) image_input = torch.from_numpy(image_input).type( torch.FloatTensor).cuda() image_input = image_input #normalization print("torch size", image_input.size()) img_np = np.uint8( np.transpose(image_input.cpu().numpy() * 255, (1, 2, 0))) # plt.figure(1) # plt.subplot(1, 2, 1) # plt.imshow(sensor) # # plt.subplot(1,2,2) # plt.imshow(img_np) # # # plt.show() iteration += 1 # print (image_input.shape) image_input = image_input.unsqueeze(0) print(image_input.shape) return image_input def _process_model_outputs(self, outputs, speed): """ A bit of heuristics in the control, to eventually make car faster, for instance. Returns: """ print("OUTPUTS", outputs) steer, throttle, brake = outputs[0], outputs[1], outputs[2] # if steer > 0.5: # throttle *= (1 - steer + 0.3) # steer += 0.3 # if steer > 1: # steer = 1 # if steer < -0.5: # throttle *= (1 + steer + 0.3) # steer -= 0.3 # if steer < -1: # steer = -1 # if brake < 0.2: # brake = 0.0 # if throttle > brake: brake = 0.0 # else: # throttle = throttle * 2 # if speed > 35.0 and brake == 0.0: # throttle = 0.0 return steer, throttle, brake
class CoILBaseline(AutonomousAgent): def setup(self, path_to_config_file): yaml_conf, checkpoint_number = checkpoint_parse_configuration_file(path_to_config_file) # Take the checkpoint name and load it checkpoint = torch.load(os.path.join(os.sep, os.path.join(*os.path.realpath(__file__).split(os.sep)[:-2]), '_logs', yaml_conf.split(os.sep)[-2], yaml_conf.split('/')[-1].split('.')[-2] , 'checkpoints', str(checkpoint_number) + '.pth')) # do the merge here merge_with_yaml(os.path.join(os.sep, os.path.join(*os.path.realpath(__file__).split(os.sep)[:-2]), yaml_conf)) self.checkpoint = checkpoint # We save the checkpoint for some interesting future use. self._model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) self.first_iter = True logging.info("Setup Model") # Load the model and prepare set it for evaluation self._model.load_state_dict(checkpoint['state_dict']) self._model.cuda() self._model.eval() self.latest_image = None self.latest_image_tensor = None # We add more time to the curve commands self._expand_command_front = 5 self._expand_command_back = 3 self.track = 2 # Track.CAMERAS def sensors(self): sensors = [{'type': 'sensor.camera.rgb', 'x': 2.0, 'y': 0.0, 'z': 1.40, 'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0, 'width': 800, 'height': 600, 'fov': 100, 'id': 'rgb'}, {'type': 'sensor.can_bus', 'reading_frequency': 25, 'id': 'can_bus' }, {'type': 'sensor.other.gnss', 'x': 0.7, 'y': -0.4, 'z': 1.60, 'id': 'GPS'} ] return sensors def run_step(self, input_data, timestamp): # Get the current directions for following the route directions = self._get_current_direction(input_data['GPS'][1]) logging.debug("Directions {}".format(directions)) # Take the forward speed and normalize it for it to go from 0-1 norm_speed = input_data['can_bus'][1]['speed'] / g_conf.SPEED_FACTOR norm_speed = torch.cuda.FloatTensor([norm_speed]).unsqueeze(0) directions_tensor = torch.cuda.LongTensor([directions]) # Compute the forward pass processing the sensors got from CARLA. model_outputs = self._model.forward_branch(self._process_sensors(input_data['rgb'][1]), norm_speed, directions_tensor) steer, throttle, brake = self._process_model_outputs(model_outputs[0]) control = carla.VehicleControl() control.steer = float(steer) control.throttle = float(throttle) control.brake = float(brake) logging.debug("Output ", control) # There is the posibility to replace some of the predictions with oracle predictions. self.first_iter = False return control def get_attentions(self, layers=None): """ Returns The activations obtained from the first layers of the latest iteration. """ if layers is None: layers = [0, 1, 2] if self.latest_image_tensor is None: raise ValueError('No step was ran yet. ' 'No image to compute the activations, Try Running ') all_layers = self._model.get_perception_layers(self.latest_image_tensor) cmap = plt.get_cmap('inferno') attentions = [] for layer in layers: y = all_layers[layer] att = torch.abs(y).mean(1)[0].data.cpu().numpy() att = att / att.max() att = cmap(att) att = np.delete(att, 3, 2) attentions.append(scipy.misc.imresize(att, [88, 200])) return attentions def _process_sensors(self, sensor): sensor = sensor[:, :, 0:3] # BGRA->BRG drop alpha channel sensor = sensor[:, :, ::-1] # BGR->RGB # sensor = sensor[g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], :, :] # crop # TODO: don't cut sensor = scipy.misc.imresize(sensor, (g_conf.SENSORS['rgb'][1], g_conf.SENSORS['rgb'][2])) self.latest_image = sensor sensor = np.swapaxes(sensor, 0, 1) sensor = np.transpose(sensor, (2, 1, 0)) sensor = torch.from_numpy(sensor / 255.0).type(torch.FloatTensor).cuda() image_input = sensor.unsqueeze(0) self.latest_image_tensor = image_input return image_input def _get_current_direction(self, vehicle_position): # for the current position and orientation try to get the closest one from the waypoints closest_id = 0 min_distance = 100000 for index in range(len(self._global_plan)): waypoint = self._global_plan[index][0] computed_distance = distance_vehicle(waypoint, vehicle_position) if computed_distance < min_distance: min_distance = computed_distance closest_id = index print(f'Closest waypoint {closest_id} dist {min_distance}') direction = self._global_plan[closest_id][1] print("Direction ", direction) if direction == RoadOption.LEFT: direction = 3.0 elif direction == RoadOption.RIGHT: direction = 4.0 elif direction == RoadOption.STRAIGHT: direction = 5.0 else: direction = 2.0 return direction @staticmethod def _process_model_outputs(outputs): """ A bit of heuristics in the control, to eventually make car faster, for instance. Returns: """ steer, throttle, brake = outputs[0], outputs[1], outputs[2] if brake < 0.05: brake = 0.0 if throttle > brake: brake = 0.0 return steer, throttle, brake def _expand_commands(self, topological_plan): """ The idea is to make the intersection indications to last longer""" # O(2*N) algorithm , probably it is possible to do in O(N) with queues. # Get the index where curves start and end curves_start_end = [] inside = False start = -1 current_curve = RoadOption.LANEFOLLOW for index in range(len(topological_plan)): command = topological_plan[index][1] if command != RoadOption.LANEFOLLOW and not inside: inside = True start = index current_curve = command if command == RoadOption.LANEFOLLOW and inside: inside = False # End now is the index. curves_start_end.append([start, index, current_curve]) if start == -1: raise ValueError("End of curve without start") start = -1 for start_end_index_command in curves_start_end: start_index = start_end_index_command[0] end_index = start_end_index_command[1] command = start_end_index_command[2] # Add the backwards curves ( Before the begginning) for index in range(1, self._expand_command_front + 1): changed_index = start_index - index if changed_index > 0: topological_plan[changed_index] = (topological_plan[changed_index][0], command) # add the onnes after the end for index in range(0, self._expand_command_back): changed_index = end_index + index if changed_index < len(topological_plan): topological_plan[changed_index] = (topological_plan[changed_index][0], command) return topological_plan
class CoILAgent(Agent): def __init__(self, checkpoint): #experiment_name='None', driver_conf=None, memory_fraction=0.18, #image_cut=[115, 510]): # use_planner=False,graph_file=None,map_file=None,augment_left_right=False,image_cut = [170,518]): Agent.__init__(self) # This should likely come from global #config_gpu = tf.ConfigProto() #config_gpu.gpu_options.visible_device_list = '0' #config_gpu.gpu_options.per_process_gpu_memory_fraction = memory_fraction #self._sess = tf.Session(config=config_gpu) # THIS DOES NOT WORK FOR FUSED PLUS LSTM #if self._config.number_frames_sequenced > self._config.number_frames_fused: # self._config_train.batch_size = self._config.number_frames_sequenced #else: # self._config_train.batch_size = self._config.number_frames_fused #self._train_manager = load_system(self._config_train) #self._config.train_segmentation = False self.model = CoILModel(g_conf.MODEL_NAME) self.model.load_state_dict(checkpoint['state_dict']) self.model.cuda() #self.model.load_network(checkpoint) #self._sess.run(tf.global_variables_initializer()) #self._control_function = getattr(machine_output_functions, # self._train_manager._config.control_mode) # More elegant way to merge with autopilot #self._agent = Autopilot(ConfigAutopilot(driver_conf.city_name)) #self._image_cut = driver_conf.image_cut #self._auto_pilot = driver_conf.use_planner #self._recording = False #self._start_time = 0 def run_step(self, measurements, sensor_data, directions, target): # pos = (rewards.player_x,rewards.player_y,22) # ori =(rewards.ori_x,rewards.ori_y,rewards.ori_z) # pos,point = self.planner.get_defined_point(pos,ori,(target[0],target[1],22),(1.0,0.02,-0.001),self._select_goal) # direction = convert_to_car_coord(point[0],point[1],pos[0],pos[1],ori[0],ori[1]) # image_filename_format = '_images/episode_{:0>3d}/{:s}/image_{:0>5d}.png' # sys.stdout = open(str("direction" + ".out", "a", buffering=1)) #control_agent = self._agent.run_step(measurements, None, target) print(" RUnning STEP ") speed = torch.cuda.FloatTensor( [measurements.player_measurements.forward_speed]).unsqueeze(0) print("Speed shape ", speed) directions_tensor = torch.cuda.LongTensor([2]) print("dir", directions_tensor) model_outputs = self.model.forward_branch( self._process_sensors(sensor_data), speed, directions_tensor) print(model_outputs) steer, throttle, brake = self._process_model_outputs( model_outputs[0], measurements.player_measurements.forward_speed) #control = self.compute_action(, # , # directions) control = carla_protocol.Control() control.steer = steer control.throttle = throttle control.brake = brake # if self._auto_pilot: # control.steer = control_agent.steer # TODO: adapt the client side agent for the new version. ( PROBLEM ) #control.throttle = control_agent.throttle #control.brake = control_agent.brake # TODO: maybe change to a more meaningfull message ?? return control def _process_sensors(self, sensors): iteration = 0 for name, size in g_conf.SENSORS.items(): sensor = sensors[name].data[ g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], ...] # if sensors[name].type == 'SemanticSegmentation': # # # # TODO: the camera name has to be sincronized with what is in the experiment... # sensor = join_classes(sensor) # # sensor = sensor[:, :, np.newaxis] # # image_transform = transforms.Compose([transforms.ToTensor(), # transforms.Resize((size[1], size[2]), interpolation=Image.NEAREST), # iag.ToGPU(), iag.Multiply((1 / (number_of_seg_classes - 1)))]) # else: plt.figure(1) plt.subplot(1, 2, 1) plt.imshow(sensor) print("Sensor size:", sensor.shape) #300 x 800 x 3 sensor = np.transpose(sensor, (2, 0, 1)) # image = resize(image,[self._image_size2,self._image_size1]) print("begin transform Sensor size:", sensor.shape) #300 x 800 x 3 print("orginal sensor", sensor[0][0][:10]) image_transform = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((size[1], size[2])), transforms.ToTensor(), iag.ToGPU() ]) # print ("Sensor Olala") # sensor = np.transpose(sensor, (2, 0, 1)) # print (sensor.shape) # sensor = np.swapaxes(sensor, 0, 1) #800 x 300 x 3 # print ("Sensor Previous SHape") # print (sensor.shape) # sensor = np.transpose(sensor, (2, 1, 0)) #3 x 300 x 800 # print ("Sensor Previous SHape PT2") # print (sensor.shape) # if iteration == 0: image_input = image_transform(sensor) print("After transform", image_input.size()) # print("After making to numpy", img_np.shape) # image_input = np.transpose(img_np, (2, 0, 1)) # print("1st transform", image_input.shape) img_np = image_input.cpu().numpy() print("img np pix", img_np[0][0][:10]) img_np = np.uint8(np.transpose(img_np, (1, 2, 0))) print("2nd transform", img_np.shape) plt.subplot(1, 2, 2) plt.imshow(img_np) print("Before div by 255", image_input[0][0][:10]) image_input = image_input / 255.0 print("After div by 255", image_input[0][0][:10]) # else: # image_input = torch.cat((image_input, sensor), 0) # iteration += 1 # print("New shape", image_input.size()) # img_np = image_input.cpu() # img_np = img_np.numpy()*255 # print("Newew shape", img_np.shape) # img_np = np.uint8(np.transpose(img_np, (1,2,0))) # # img_np = np.uint8((image_input[0].cpu()).numpy() * 255) # # print (img_np.shape) # plt.subplot(1, 3, 3) # plt.imshow(img_np) plt.show() print(image_input.shape) image_input = image_input.unsqueeze(0) print(image_input.shape) return image_input def _process_model_outputs(self, outputs, speed): """ A bit of heuristics in the control, to eventually make car faster, for instance. Returns: """ steer, throttle, brake = outputs[0], outputs[1], outputs[2] # if brake < 0.2: # brake = 0.0 # # if throttle > brake: # brake = 0.0 # else: # throttle = throttle * 2 # if speed > 35.0 and brake == 0.0: # throttle = 0.0 return steer, throttle, brake """ def compute_action(self, sensors, speed, direction): capture_time = time.time() sensor_pack = [] for i in range(len(sensors)): sensor = sensors[i] sensor = sensor[g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], :] if g_conf.param.SENSORS.keys()[i] == 'rgb': sensor = scipy.misc.imresize(sensor, [self._config.sensors_size[i][0], self._config.sensors_size[i][1]]) elif g_conf.param.SENSORS.keys()[i] == 'labels': sensor = scipy.misc.imresize(sensor, [self._config.sensors_size[i][0], self._config.sensors_size[i][1]], interp='nearest') sensor = join_classes(sensor) * int(255 / (number_of_seg_classes - 1)) sensor = sensor[:, :, np.newaxis] sensor_pack.append(sensor) if len(sensor_pack) > 1: image_input = np.concatenate((sensor_pack[0], sensor_pack[1]), axis=2) else: image_input = sensor_pack[0] image_input = image_input.astype(np.float32) image_input = np.multiply(image_input, 1.0 / 255.0) image_input = sensors[0] image_input = image_input.astype(np.float32) image_input = np.multiply(image_input, 1.0 / 255.0) # TODO: This will of course depend on the model , if it is based on sequences there are # TODO: different requirements #tensor = self.model(image_input) outputs = self.model.forward_branch(image_input, speed, direction) return control # ,machine_output_functions.get_intermediate_rep(image_input,speed,self._config,self._sess,self._train_manager) """ """