def __init__(self, alpha, beta, input_dims, tau, env, env_id, gamma=0.99, n_actions=2, max_size=1000000, layer_1_size=256, layer_2_size=256, batch_size=100, reward_scale=2): self.gamma = gamma self.tau = tau self.memory = ReplayBuffer(max_size, input_dims, n_actions) self.batch_size = batch_size self.n_actions = n_actions self.scale = reward_scale self.actor = ActorNetwork(alpha, input_dims, layer_1_size, layer_2_size, n_actions=n_actions, name=env_id + '_actor', max_action=env.action_space.high) self.critic_1 = CriticNetwork(beta, input_dims, layer_1_size, layer_2_size, n_actions=n_actions, name=env_id + '_critic_1') self.critic_2 = CriticNetwork(beta, input_dims, layer_1_size, layer_2_size, n_actions=n_actions, name=env_id + '_critic_2') self.value = ValueNetwork(beta, input_dims, layer_1_size, layer_2_size, name=env_id + '_value') self.target_value = ValueNetwork(beta, input_dims, layer_1_size, layer_2_size, name=env_id + '_target_value') self.update_network_parameters(tau=1)
def __init__(self, alpha = 0.0003, beta = 0.0003, input_dims = [8], env = None, gamma = 0.99, tau = 0.005, n_actions = 2, max_size = 1000000, layer1_size = 256, layer2_size = 256, batch_size = 256, reward_scale = 2): self.gamma = gamma self.tau = tau self.batch_size = batch_size self.n_actions = n_actions self.scale = reward_scale self.memory = ReplayBuffer(max_size, input_dims, n_actions = n_actions) self.actor = ActorNetwork(alpha, input_dims, n_actions = n_actions, max_action = env.action_space.high) self.critic1 = CriticNetwork(beta, input_dims, n_actions = n_actions, name = 'critic1') self.critic2 = CriticNetwork(beta, input_dims, n_actions = n_actions, name = 'critic2') self.value = ValueNetwork(beta, input_dims, name = 'value') self.target_value = ValueNetwork(beta, input_dims, name = 'target') self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self.update_network_params(tau = 1)
def __init__(self, input_size, output_size, hidden = 256, lr_actor=1.0e-3, lr_critic=1.0e-3, agent_number=0, tau=1.0e-2, gamma=0.99, epsilon=1.0, epsilon_decay=0.99, weight_decay=0, clipgrad=.1, seed = 42): super(Agent, self).__init__() self.seed = seed self.actor = ActorNetwork(input_size, output_size, name=f"Actor_Agent{agent_number}").to(device) self.critic = CriticNetwork(input_size, output_size, name=f"Critic_Agent{agent_number}").to(device) self.target_actor = ActorNetwork(input_size, output_size, name=f"Actor_Target_Agent{agent_number}").to(device) self.target_critic = CriticNetwork(input_size, output_size, name=f"Critic_Target_Agent{agent_number}").to(device) self.noise = OUActionNoise(mu=np.zeros(output_size)) self.tau = tau self.epsilon = epsilon self.epsilon_decay=epsilon_decay self.gamma = gamma self.clipgrad = clipgrad self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=lr_actor) self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=lr_critic, weight_decay=weight_decay)
def __init__(self, alpha=0.0003, beta=.0003, input_dims=[8], env=None, gamma=.99, n_actions=2, max_size=1000000, layer1_size=256, layer2_size=256, tau=.005, batch_size=256, reward_scale=2): # reward scales depends on action convention for the environment self.gamma = gamma self.tau = tau self.memory = ReplayBuffer(max_size, input_dims, n_actions) self.batch_size = batch_size self.n_actions = n_actions # set up classes self.actor = ActorNetwork(alpha, input_dims, max_action=env.action_space.high, n_actions=n_actions, name='actor') self.critic1 = CriticNetwork(beta, input_dims, n_actions=n_actions, name='critic_1') self.critic2 = CriticNetwork(beta, input_dims, n_actions=n_actions, name='critic_2') self.value = ValueNetwork(beta, input_dims, name='value') # target value self.target_value = ValueNetwork(beta, input_dims, name='target_value') self.scale = reward_scale self.update_network_parameters(tau=1)
def __init__(self, environment, initial_hyper_parameters, id, log_file_name): self.environment_name = environment self.environment = gym.make('{}'.format(self.environment_name)) self.episode_finished = False self.log_file_name = log_file_name self.state = self.environment.reset() self.next_state = [] self.cum_sum = 0 self.episode_num = 0 self.episode_rewards = [] self.id = id self.hyper_parameters = initial_hyper_parameters # these are the parameters we want to use with population based training self.actor_learning_rate = self.hyper_parameters['actor_learning_rate'] self.critic_learning_rate = self.hyper_parameters[ 'critic_learning_rate'] self.discount_factor = self.hyper_parameters['discount_factor'] # We're going to use one network for all of our minions self.actor_network = ActorNetwork(observation_dims=4, output_dims=2, name=f'Agent {self.id} Actor') self.critic_network = CriticNetwork(observation_dims=4, output_dims=1, name=f'Agent {self.id} Critic') self.actor_network.compile(optimizer=tf.keras.optimizers.RMSprop( learning_rate=self.actor_learning_rate)) self.critic_network.compile(optimizer=tf.keras.optimizers.RMSprop( learning_rate=self.critic_learning_rate)) # Since Actor-Critic is an on-policy method, we will not use a replay buffer self.states = [] self.actions = [] self.next_states = [] self.rewards = [] self.dones = [] self.losses = [] self.scores = []
class Agent(): def __init__(self, alpha = 0.0003, beta = 0.0003, input_dims = [8], env = None, gamma = 0.99, tau = 0.005, n_actions = 2, max_size = 1000000, layer1_size = 256, layer2_size = 256, batch_size = 256, reward_scale = 2): self.gamma = gamma self.tau = tau self.batch_size = batch_size self.n_actions = n_actions self.scale = reward_scale self.memory = ReplayBuffer(max_size, input_dims, n_actions = n_actions) self.actor = ActorNetwork(alpha, input_dims, n_actions = n_actions, max_action = env.action_space.high) self.critic1 = CriticNetwork(beta, input_dims, n_actions = n_actions, name = 'critic1') self.critic2 = CriticNetwork(beta, input_dims, n_actions = n_actions, name = 'critic2') self.value = ValueNetwork(beta, input_dims, name = 'value') self.target_value = ValueNetwork(beta, input_dims, name = 'target') self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self.update_network_params(tau = 1) def choose_action(self, obs): state = torch.tensor([obs],dtype=torch.float32).to(self.device) actions, _ = self.actor.sample_normal(state, reparam = False) return actions.cpu().detach().numpy()[0] def store_trans(self, state, action, reward, new_state, done): self.memory.store_trans(state, action, reward, new_state, done) def update_network_params(self, tau = None): if tau is None: tau = self.tau target_value_params = self.target_value.named_parameters() value_params = self.value.named_parameters() target_value_state_dict = dict(target_value_params) value_state_dict = dict(value_params) for name in value_state_dict.keys(): value_state_dict[name] = tau * value_state_dict[name].clone() + \ (1 - tau) * target_value_state_dict[name].clone() self.target_value.load_state_dict(value_state_dict) def save_models(self): self.actor.save_checkpoint() self.value.save_checkpoint() self.target_value.save_checkpoint() self.critic1.save_checkpoint() self.critic2.save_checkpoint() print('saving models') def load_models(self): self.actor.load_checkpoint() self.value.load_checkpoint() self.target_value.load_checkpoint() self.critic1.load_checkpoint() self.critic2.load_checkpoint() print('loading models') def get_critic_val_log_prob(self, state, reparam): actions, log_probs = self.actor.sample_normal(state, reparam = False) log_probs = log_probs.view(-1) q1_new = self.critic1(state, actions) q2_new = self.critic2(state, actions) critic_value = torch.min(q1_new, q2_new) critic_value = critic_value.view(-1) return log_probs, critic_value def learn(self): if self.memory.mem_counter < self.batch_size: return state, action, reward, new_state, done = \ self.memory.sample_buffer(self.batch_size) reward = torch.tensor(reward, dtype=torch.float).to(self.actor.device) done = torch.tensor(done).to(self.actor.device) state_ = torch.tensor(new_state, dtype=torch.float).to(self.actor.device) state = torch.tensor(state, dtype=torch.float).to(self.actor.device) action = torch.tensor(action, dtype=torch.float).to(self.actor.device) value = self.value(state).view(-1) value_ = self.target_value(state_).view(-1) value_[done] = 0.0 actions, log_probs = self.actor.sample_normal(state, reparam=False) log_probs = log_probs.view(-1) q1_new_policy = self.critic1.forward(state, actions) q2_new_policy = self.critic2.forward(state, actions) critic_value = torch.min(q1_new_policy, q2_new_policy) critic_value = critic_value.view(-1) self.value.optimizer.zero_grad() value_target = critic_value - log_probs value_loss = 0.5 * F.mse_loss(value, value_target) value_loss.backward(retain_graph=True) self.value.optimizer.step() actions, log_probs = self.actor.sample_normal(state, reparam=True) log_probs = log_probs.view(-1) q1_new_policy = self.critic1.forward(state, actions) q2_new_policy = self.critic2.forward(state, actions) critic_value = torch.min(q1_new_policy, q2_new_policy) critic_value = critic_value.view(-1) actor_loss = log_probs - critic_value actor_loss = torch.mean(actor_loss) self.actor.optimizer.zero_grad() actor_loss.backward(retain_graph=True) self.actor.optimizer.step() self.critic1.optimizer.zero_grad() self.critic2.optimizer.zero_grad() q_hat = self.scale*reward + self.gamma*value_ q1_old_policy = self.critic1.forward(state, action).view(-1) q2_old_policy = self.critic2.forward(state, action).view(-1) critic1_loss = 0.5 * F.mse_loss(q1_old_policy, q_hat) critic2_loss = 0.5 * F.mse_loss(q2_old_policy, q_hat) critic_loss = critic1_loss + critic2_loss critic_loss.backward() self.critic1.optimizer.step() self.critic2.optimizer.step() self.update_network_params()
class Agent: def __init__(self, environment, initial_hyper_parameters, id, log_file_name): self.environment_name = environment self.environment = gym.make('{}'.format(self.environment_name)) self.episode_finished = False self.log_file_name = log_file_name self.state = self.environment.reset() self.next_state = [] self.cum_sum = 0 self.episode_num = 0 self.episode_rewards = [] self.id = id self.hyper_parameters = initial_hyper_parameters # these are the parameters we want to use with population based training self.actor_learning_rate = self.hyper_parameters['actor_learning_rate'] self.critic_learning_rate = self.hyper_parameters[ 'critic_learning_rate'] self.discount_factor = self.hyper_parameters['discount_factor'] # We're going to use one network for all of our minions self.actor_network = ActorNetwork(observation_dims=4, output_dims=2, name=f'Agent {self.id} Actor') self.critic_network = CriticNetwork(observation_dims=4, output_dims=1, name=f'Agent {self.id} Critic') self.actor_network.compile(optimizer=tf.keras.optimizers.RMSprop( learning_rate=self.actor_learning_rate)) self.critic_network.compile(optimizer=tf.keras.optimizers.RMSprop( learning_rate=self.critic_learning_rate)) # Since Actor-Critic is an on-policy method, we will not use a replay buffer self.states = [] self.actions = [] self.next_states = [] self.rewards = [] self.dones = [] self.losses = [] self.scores = [] def save_models(self): # print('... saving models ...') self.actor_network.save_weights(self.actor_network.checkpoint_file) self.critic_network.save_weights(self.critic_network.checkpoint_file) def load_models(self): # print('... loading models ...') self.actor_network.load_weights(self.actor_network.checkpoint_file) self.critic_network.load_weights(self.critic_network.checkpoint_file) def choose_action(self, state): action_logits = self.actor_network(tf.convert_to_tensor([state])) action_probabilities = tf.nn.softmax(action_logits) action_distribution = tfp.distributions.Categorical( probs=action_probabilities, dtype=tf.float32) action = action_distribution.sample() return int(action.numpy()[0]) def play(self): done = False while not done: action_to_take = self.choose_action(self.state) next_state, reward, done, _ = self.environment.step(action_to_take) # self.environment.render() self.cum_sum += reward self.learn(self.state, action_to_take, reward, next_state, done) self.state = next_state if done: self.state = self.environment.reset() self.episode_num += 1 self.episode_rewards.append(self.cum_sum) self.scores.append(self.cum_sum) f = open(f'{self.environment_name}-{self.log_file_name}.csv', 'a') f.write(f'{self.id},' f'{self.episode_num},' f'{self.cum_sum},' f'{self.actor_network.optimizer.learning_rate.numpy()},' f'{self.critic_network.optimizer.learning_rate.numpy()}\n') f.close() if self.episode_num % 50 == 0: print(self.id, ' -> ', self.episode_num, ' -> ', np.mean(self.episode_rewards)) self.episode_rewards.clear() self.cum_sum = 0 def learn(self, state, action, reward, next_state, done): with tf.GradientTape() as tape1, tf.GradientTape() as tape2: # Start calculating the Actor and Critic losses for each minion's experience action_logits = self.actor_network(tf.convert_to_tensor([state])) state_values = self.critic_network(tf.convert_to_tensor([state])) next_state_values = self.critic_network( tf.convert_to_tensor([next_state])) action_probabilities = tf.nn.softmax(action_logits) # We'll be using an advantage function action_distributions = tfp.distributions.Categorical( probs=action_probabilities, dtype=tf.float32) log_probs = action_distributions.log_prob(action) advantage = reward + self.discount_factor * next_state_values * ( 1 - int(done)) - state_values entropy = -1 * tf.math.reduce_sum( action_probabilities * tf.math.log(action_probabilities)) actor_loss = -log_probs * advantage - self.hyper_parameters[ 'entropy_coefficient'] * entropy critic_loss = advantage**2 # Optimize master's network with the mean of all the losses actor_grads = tape1.gradient( actor_loss, self.actor_network.trainable_variables) critic_grads = tape2.gradient( critic_loss, self.critic_network.trainable_variables) self.actor_network.optimizer.apply_gradients( zip(actor_grads, self.actor_network.trainable_variables)) self.critic_network.optimizer.apply_gradients( zip(critic_grads, self.critic_network.trainable_variables)) self.losses.append(actor_loss.numpy())
def __init__(self, state_size, action_size, lr_actor=LR_ACTOR, lr_critic=LR_CRITIC, random_seed=42, num_agents=1): """Initialize Agent object. Params ==== state_size (int): Dimension of each state action_size (int): Dimension of each action lr_actor (float): Learning rate for actor model lr_critic (float): Learning Rate for critic model random_seed (int): Random seed num_agents (int): Number of agents return ==== None """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(random_seed) self.num_agents = num_agents # Initialize time step (for updating every hyperparameters["update_every"] steps) self.t_step = 0 # Actor network self.actor = ActorNetwork(lr_actor, state_size, action_size, random_seed, name="actor") self.actor_target = ActorNetwork(lr_actor, state_size, action_size, random_seed, name="actor_target") self.soft_update(self.actor, self.actor_target, tau=1) # Critic network self.critic = CriticNetwork(lr_critic, state_size, action_size, random_seed, name="critic") self.critic_target = CriticNetwork(lr_critic, state_size, action_size, random_seed, name="critic_target") self.soft_update(self.critic, self.critic_target, tau=1) # Noise process self.noise = OUActionNoise(mu=np.zeros(action_size)) # Replay buffer memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed)
class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, lr_actor=LR_ACTOR, lr_critic=LR_CRITIC, random_seed=42, num_agents=1): """Initialize Agent object. Params ==== state_size (int): Dimension of each state action_size (int): Dimension of each action lr_actor (float): Learning rate for actor model lr_critic (float): Learning Rate for critic model random_seed (int): Random seed num_agents (int): Number of agents return ==== None """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(random_seed) self.num_agents = num_agents # Initialize time step (for updating every hyperparameters["update_every"] steps) self.t_step = 0 # Actor network self.actor = ActorNetwork(lr_actor, state_size, action_size, random_seed, name="actor") self.actor_target = ActorNetwork(lr_actor, state_size, action_size, random_seed, name="actor_target") self.soft_update(self.actor, self.actor_target, tau=1) # Critic network self.critic = CriticNetwork(lr_critic, state_size, action_size, random_seed, name="critic") self.critic_target = CriticNetwork(lr_critic, state_size, action_size, random_seed, name="critic_target") self.soft_update(self.critic, self.critic_target, tau=1) # Noise process self.noise = OUActionNoise(mu=np.zeros(action_size)) # Replay buffer memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed) def step(self, states, actions, rewards, next_states, dones): """Save experience in replay memory, and use random sample from buffer to learn.""" # Save experience / reward # Support for multi agents learners for state, action, reward, next_state, done in zip( states, actions, rewards, next_states, dones): self.memory.add(state, action, reward, next_state, done) # Update timestep to learn self.t_step = (self.t_step + 1) % UPDATE_EVERY # Learn, if enough samples are available in memory if len(self.memory) > BATCH_SIZE and self.t_step == 0: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, add_noise=True): """Returns actions for given state as per current policy.""" states = T.from_numpy(state).float().to(device) self.actor.eval() with T.no_grad(): actions = self.actor(states).cpu().data.numpy() self.actor.train() if add_noise: actions += self.noise.sample() return np.clip(actions, -1, 1) def reset(self): self.noise.reset() def learn(self, experiences, gamma): """Update policy and value parameters using given batch of experience tuples. Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) where: actor_target(state) -> action critic_target(state, action) -> Q-value Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # ---------------------------- update critic ---------------------------- # # Get predicted next-state actions and Q values from target models actions_next = self.actor_target(next_states) Q_targets_next = self.critic_target(next_states, actions_next) # Compute Q targets for current states (y_i) Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Compute critic loss Q_expected = self.critic(states, actions) critic_loss = F.mse_loss(Q_expected, Q_targets) # Minimize the loss self.critic.optimizer.zero_grad() critic_loss.backward() T.nn.utils.clip_grad_norm_(self.critic.parameters(), 1.0) self.critic.optimizer.step() # ---------------------------- update actor ---------------------------- # # Compute actor loss actions_pred = self.actor(states) actor_loss = -self.critic(states, actions_pred).mean() # Minimize the loss self.actor.optimizer.zero_grad() actor_loss.backward() self.actor.optimizer.step() # ----------------------- update target networks ----------------------- # self.soft_update(self.critic, self.critic_target, TAU) self.soft_update(self.actor, self.actor_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model: PyTorch model (weights will be copied from) target_model: PyTorch model (weights will be copied to) tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data) def save_models(self): """ Save models weights """ self.actor.save_checkpoint() self.critic.save_checkpoint() self.actor_target.save_checkpoint() self.critic_target.save_checkpoint() def load_models(self): """ Load models weights """ self.actor.load_checkpoint() self.critic.load_checkpoint() self.actor_target.load_checkpoint() self.critic_target.load_checkpoint()
def getCriticNetwork(self): # self.CriticNetwork = CriticNetwork(self.config) return CriticNetwork(self.config)
def __init__(self, alpha, beta, input_dims, tau, env, gamma=0.99, update_actor_interval=2, warmup=1000, n_actions=2, max_size=1000000, layer1_size=400, layer2_size=300, batch_size=100, noise=0.1): self.gamma = gamma self.tau = tau self.max_action = env.action_space.high self.min_action = env.action_space.low self.memory = ReplayBuffer(max_size, input_dims, n_actions) self.batch_size = batch_size self.learn_step_cntr = 0 self.time_step = 0 self.warmup = warmup self.n_actions = n_actions self.update_actor_interval = update_actor_interval self.actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions, name='actor') self.critic_1 = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions, name='critic_1') self.critic_2 = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions, name='critic_2') self.target_actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions, name='target_actor') self.target_critic_1 = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions, name='target_critic_1') self.target_critic_2 = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions, name='target_critic_2') self.noise = noise self.update_network_parameters(tau=1)
class Agent(): def __init__(self, alpha, beta, input_dims, tau, env, gamma=0.99, update_actor_interval=2, warmup=1000, n_actions=2, max_size=1000000, layer1_size=400, layer2_size=300, batch_size=100, noise=0.1): self.gamma = gamma self.tau = tau self.max_action = env.action_space.high self.min_action = env.action_space.low self.memory = ReplayBuffer(max_size, input_dims, n_actions) self.batch_size = batch_size self.learn_step_cntr = 0 self.time_step = 0 self.warmup = warmup self.n_actions = n_actions self.update_actor_interval = update_actor_interval self.actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions, name='actor') self.critic_1 = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions, name='critic_1') self.critic_2 = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions, name='critic_2') self.target_actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions, name='target_actor') self.target_critic_1 = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions, name='target_critic_1') self.target_critic_2 = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions, name='target_critic_2') self.noise = noise self.update_network_parameters(tau=1) def choose_action(self, observation): if self.time_step < self.warmup: mu = T.tensor(np.random.normal(scale=self.noise, size=(self.n_actions,))).\ to(self.actor.device) else: state = T.tensor(observation, dtype=T.float).to(self.actor.device) mu = self.actor(state).to(self.actor.device) mu_prime = mu + T.tensor(np.random.normal(scale=self.noise), dtype=T.float).to(self.actor.device) mu_prime = T.clamp(mu_prime, self.min_action[0], self.max_action[0]) self.time_step += 1 return mu_prime.cpu().detach().numpy() def remember(self, state, action, reward, state_, done): self.memory.store_transitions(state, action, reward, state_, done) def learn(self): if self.memory.mem_cntr < self.batch_size: return state, action, reward, state_, done =\ self.memory.sample_buffer(self.batch_size) state = T.tensor(state, dtype=T.float).to(self.critic_1.device) state_ = T.tensor(state_, dtype=T.float).to(self.critic_1.device) action = T.tensor(action, dtype=T.float).to(self.critic_1.device) reward = T.tensor(reward, dtype=T.float).to(self.critic_1.device) done = T.tensor(done).to(self.critic_1.device) target_actions = self.target_actor(state_) target_actions = target_actions +\ T.clamp(T.tensor(np.random.normal(scale=0.2)), -0.5, 0.5) target_actions = T.clamp(target_actions, self.min_action[0], self.max_action[0]) q1_ = self.target_critic_1(state_, target_actions) q2_ = self.target_critic_2(state_, target_actions) q1 = self.critic_1(state, action) q2 = self.critic_2(state, action) q1_[done] = 0.0 q2_[done] = 0.0 q1_ = q1_.view(-1) q2_ = q2_.view(-1) critic_value_ = T.min(q1_, q2_) target = reward + self.gamma * critic_value_ target = target.view(self.batch_size, 1) self.critic_1.optimizer.zero_grad() self.critic_2.optimizer.zero_grad() q1_loss = F.mse_loss(target, q1) q2_loss = F.mse_loss(target, q2) critic_loss = q1_loss + q2_loss critic_loss.backward() self.critic_1.optimizer.step() self.critic_2.optimizer.step() self.learn_step_cntr += 1 if self.learn_step_cntr % self.update_actor_interval != 0: return self.actor.optimizer.zero_grad() actor_q1_loss = self.critic_1(state, self.actor(state)) actor_loss = -T.mean(actor_q1_loss) actor_loss.backward() self.actor.optimizer.step() self.update_network_parameters() def update_network_parameters(self, tau=None): if tau is None: tau = self.tau actor_params = self.actor.named_parameters() critic_1_params = self.critic_1.named_parameters() critic_2_params = self.critic_2.named_parameters() target_actor_params = self.target_actor.named_parameters() target_critic_1_params = self.target_critic_1.named_parameters() target_critic_2_params = self.target_critic_2.named_parameters() critic_1_state_dict = dict(critic_1_params) critic_2_state_dict = dict(critic_2_params) actor_state_dict = dict(actor_params) target_critic_1_state_dict = dict(target_critic_1_params) target_critic_2_state_dict = dict(target_critic_2_params) target_actor_state_dict = dict(target_actor_params) for name in critic_1_state_dict: critic_1_state_dict[name] = tau*critic_1_state_dict[name].clone() \ + (1-tau)*target_critic_1_state_dict[name].clone() for name in critic_2_state_dict: critic_2_state_dict[name] = tau*critic_2_state_dict[name].clone() \ + (1-tau)*target_critic_2_state_dict[name].clone() for name in actor_state_dict: actor_state_dict[name] = tau*actor_state_dict[name].clone() + \ (1-tau)*target_actor_state_dict[name].clone() self.target_critic_1.load_state_dict(critic_1_state_dict) self.target_critic_2.load_state_dict(critic_2_state_dict) self.target_actor.load_state_dict(actor_state_dict) def save_models(self): self.actor.save_checkpoints() self.critic_1.save_checkpoints() self.critic_2.save_checkpoints() self.target_actor.save_checkpoints() self.target_critic_1.save_checkpoints() self.target_critic_2.save_checkpoints() def load_models(self): self.actor.load_checkpoints() self.critic_1.load_checkpoints() self.critic_2.load_checkpoints() self.target_actor.load_checkpoints() self.target_critic_1.load_checkpoints() self.target_critic_2.load_checkpoints()
class Agent(): def __init__(self, alpha, beta, input_dims, tau, env, env_id, gamma=0.99, n_actions=2, max_size=1000000, layer_1_size=256, layer_2_size=256, batch_size=100, reward_scale=2): self.gamma = gamma self.tau = tau self.memory = ReplayBuffer(max_size, input_dims, n_actions) self.batch_size = batch_size self.n_actions = n_actions self.scale = reward_scale self.actor = ActorNetwork(alpha, input_dims, layer_1_size, layer_2_size, n_actions=n_actions, name=env_id + '_actor', max_action=env.action_space.high) self.critic_1 = CriticNetwork(beta, input_dims, layer_1_size, layer_2_size, n_actions=n_actions, name=env_id + '_critic_1') self.critic_2 = CriticNetwork(beta, input_dims, layer_1_size, layer_2_size, n_actions=n_actions, name=env_id + '_critic_2') self.value = ValueNetwork(beta, input_dims, layer_1_size, layer_2_size, name=env_id + '_value') self.target_value = ValueNetwork(beta, input_dims, layer_1_size, layer_2_size, name=env_id + '_target_value') self.update_network_parameters(tau=1) def choose_action(self, observation): state = T.tensor([observation], dtype=T.float).to(self.actor.device) actions, _ = self.actor.sample_normal(state, reparameterize=False) return actions.cpu().detach().numpy()[0] def remember(self, state, action, reward, state_, done): self.memory.store_transitions(state, action, reward, state_, done) def update_network_parameters(self, tau=None): if tau is None: tau = self.tau value_params = self.value.named_parameters() target_value_params = self.target_value.named_parameters() value_state_dict = dict(value_params) target_value_state_dict = dict(target_value_params) for name in value_state_dict: value_state_dict[name] = tau*value_state_dict[name].clone() \ + (1-tau)*target_value_state_dict[name].clone() self.target_value.load_state_dict(value_state_dict) def save_models(self): print('.... saving models ....') self.actor.save_checkpoint() self.value.save_checkpoint() self.target_value.save_checkpoint() self.critic_1.save_checkpoint() self.critic_2.save_checkpoint() def load_models(self): print('.... loading models ....') self.actor.load_checkpoint() self.value.load_checkpoint() self.target_value.load_checkpoint() self.critic_1.load_checkpoint() self.critic_2.load_checkpoint() def learn(self): if self.memory.mem_cntr < self.batch_size: return state, action, reward, state_, done =\ self.memory.sample_buffer(self.batch_size) state = T.tensor(state, dtype=T.float).to(self.critic_1.device) state_ = T.tensor(state_, dtype=T.float).to(self.critic_1.device) action = T.tensor(action, dtype=T.float).to(self.critic_1.device) reward = T.tensor(reward, dtype=T.float).to(self.critic_1.device) done = T.tensor(done).to(self.critic_1.device) value = self.value(state).view(-1) value_ = self.target_value(state_).view(-1) value_[done] = 0.0 actions, log_probs = self.actor.sample_normal(state, reparameterize=False) log_probs = log_probs.view(-1) q1_new_policy = self.critic_1(state, actions) q2_new_policy = self.critic_2(state, actions) critic_value = T.min(q1_new_policy, q2_new_policy) critic_value = critic_value.view(-1) self.value.optimizer.zero_grad() value_target = critic_value - log_probs value_loss = 0.5 * F.mse_loss(value, value_target) value_loss.backward(retain_graph=True) self.value.optimizer.step() actions, log_probs = self.actor.sample_normal(state, reparameterize=True) log_probs = log_probs.view(-1) q1_new_policy = self.critic_1(state, actions) q2_new_policy = self.critic_2(state, actions) critic_value = T.min(q1_new_policy, q2_new_policy) critic_value = critic_value.view(-1) actor_loss = log_probs - critic_value actor_loss = T.mean(actor_loss) self.actor.optimizer.zero_grad() actor_loss.backward(retain_graph=True) self.actor.optimizer.step() self.critic_1.optimizer.zero_grad() self.critic_2.optimizer.zero_grad() q_hat = self.scale * reward + self.gamma * value_ q1_old_policy = self.critic_1(state, action).view(-1) q2_old_policy = self.critic_2(state, action).view(-1) critic_1_loss = 0.5 * F.mse_loss(q1_old_policy, q_hat) critic_2_loss = 0.5 * F.mse_loss(q2_old_policy, q_hat) critic_loss = critic_1_loss + critic_2_loss critic_loss.backward() self.critic_1.optimizer.step() self.critic_2.optimizer.step() self.update_network_parameters()
class Agent: def __init__(self, input_size, output_size, hidden = 256, lr_actor=1.0e-3, lr_critic=1.0e-3, agent_number=0, tau=1.0e-2, gamma=0.99, epsilon=1.0, epsilon_decay=0.99, weight_decay=0, clipgrad=.1, seed = 42): super(Agent, self).__init__() self.seed = seed self.actor = ActorNetwork(input_size, output_size, name=f"Actor_Agent{agent_number}").to(device) self.critic = CriticNetwork(input_size, output_size, name=f"Critic_Agent{agent_number}").to(device) self.target_actor = ActorNetwork(input_size, output_size, name=f"Actor_Target_Agent{agent_number}").to(device) self.target_critic = CriticNetwork(input_size, output_size, name=f"Critic_Target_Agent{agent_number}").to(device) self.noise = OUActionNoise(mu=np.zeros(output_size)) self.tau = tau self.epsilon = epsilon self.epsilon_decay=epsilon_decay self.gamma = gamma self.clipgrad = clipgrad self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=lr_actor) self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=lr_critic, weight_decay=weight_decay) def act(self, state, add_noise=True): """Returns actions for given state as per current policy.""" state = torch.from_numpy(state).float().unsqueeze(0).to(device) #.unsqueeze(0) self.actor.eval() with torch.no_grad(): action = self.actor(state).cpu().squeeze(0).data.numpy() self.actor.train() if add_noise: action += self.noise.sample() * self.epsilon return np.clip(action, -1, 1) def learn(self, experiences): """Update policy and value parameters using given batch of experience tuples. Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) where: actor_target(state) -> action critic_target(state, action) -> Q-value Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # ---------------------------- update critic ---------------------------- # # Get predicted next-state actions and Q values from target models actions_next = self.target_actor(next_states.to(device)) #set_trace() Q_targets_next = self.target_critic(next_states.to(device), actions_next.to(device)) # Compute Q targets for current states (y_i) Q_targets = rewards + (self.gamma * Q_targets_next * (1 - dones)) # Compute critic loss Q_expected = self.critic(states, actions) critic_loss = f.mse_loss(Q_expected, Q_targets) # Minimize the loss self.critic_optimizer.zero_grad() critic_loss.backward() clip_grad_norm_(self.critic.parameters(), self.clipgrad) self.critic_optimizer.step() # update actor # Compute actor loss actions_pred = self.actor(states) actor_loss = -self.critic(states, actions_pred).mean() # Minimize the loss self.actor_optimizer.zero_grad() actor_loss.backward() #clip_grad_norm_(self.actor.parameters(), self.clipgrad) self.actor_optimizer.step() # update target networks self.soft_update(self.critic, self.target_critic ) self.soft_update(self.actor, self.target_actor) # update epsilon and noise self.epsilon *= self.epsilon_decay self.noise.reset() def reset(self): self.noise.reset() def soft_update(self, local_model, target_model): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model: PyTorch model (weights will be copied from) target_model: PyTorch model (weights will be copied to) tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(self.tau*local_param.data + (1.0-self.tau)*target_param.data) def save_models(self): """ Save models weights """ self.actor.save_checkpoint() self.critic.save_checkpoint() self.target_actor.save_checkpoint() self.target_critic.save_checkpoint() def load_models(self): """ Load models weights """ self.actor.load_checkpoint() self.critic.load_checkpoint() self.target_actor.load_checkpoint() self.target_critic.load_checkpoint()
class Agent(): def __init__(self, alpha=0.0003, beta=.0003, input_dims=[8], env=None, gamma=.99, n_actions=2, max_size=1000000, layer1_size=256, layer2_size=256, tau=.005, batch_size=256, reward_scale=2): # reward scales depends on action convention for the environment self.gamma = gamma self.tau = tau self.memory = ReplayBuffer(max_size, input_dims, n_actions) self.batch_size = batch_size self.n_actions = n_actions # set up classes self.actor = ActorNetwork(alpha, input_dims, max_action=env.action_space.high, n_actions=n_actions, name='actor') self.critic1 = CriticNetwork(beta, input_dims, n_actions=n_actions, name='critic_1') self.critic2 = CriticNetwork(beta, input_dims, n_actions=n_actions, name='critic_2') self.value = ValueNetwork(beta, input_dims, name='value') # target value self.target_value = ValueNetwork(beta, input_dims, name='target_value') self.scale = reward_scale self.update_network_parameters(tau=1) def choose_action(self, observation): # here we turn into a tensor state = T.tensor([observation]).to(self.actor.device).float() # print(type(state)) actions, _ = self.actor.sample_normal(state, reparameterize=False) return actions.cpu().detach().numpy()[0] def remember(self, state, action, reward, new_state, done): self.memory.store_transition(state, action, reward, new_state, done) def update_network_parameters(self, tau=None): if tau is None: tau = self.tau target_value_params = self.target_value.named_parameters() value_params = self.value.named_parameters() target_value_state_dict = dict(target_value_params) value_state_dict = dict(value_params) for name in value_state_dict: value_state_dict[name] = tau * value_state_dict[name].clone() + ( 1 - tau) * target_value_state_dict[name].clone() self.target_value.load_state_dict(value_state_dict) def save_models(self): print("saving models:") self.actor.save_checkpoint() self.value.save_checkpoint() self.target_value.save_checkpoint() self.critic1.save_checkpoint() self.critic2.save_checkpoint() def load_models(self): print("loading models:") self.actor.load_checkpoint() self.value.load_checkpoint() self.target_value.load_checkpoint() self.critic1.load_checkpoint() self.critic2.load_checkpoint() def learn(self): # must fully load up memory, otherwise must keep learning if self.memory.mem_cntr < self.batch_size: return state, action, reward, new_state, done = self.memory.sample_buffer( self.batch_size) reward = T.tensor(reward, dtype=T.float).to(self.actor.device) done = T.tensor(done).to(self.actor.device) state_ = T.tensor(new_state, dtype=T.float).to(self.actor.device) state = T.tensor(state, dtype=T.float).to(self.actor.device) action = T.tensor(action, dtype=T.float).to(self.actor.device) value = self.value(state).view(-1) value_ = self.target_value(state_).view(-1) value_[done] = 0.0 actions, log_probs = self.actor.sample_normal(state, reparameterize=False) log_probs = log_probs.view(-1) q1_new_policy = self.critic1.forward(state, actions) q2_new_policy = self.critic2.forward(state, actions) critic_value = T.min(q1_new_policy, q2_new_policy) critic_value = critic_value.view(-1) self.value.optimizer.zero_grad() value_target = critic_value - log_probs value_loss = .5 * F.mse_loss(value, value_target) value_loss.backward(retain_graph=True) self.value.optimizer.step() actions, log_probs = self.actor.sample_normal(state, reparameterize=True) log_probs = log_probs.view(-1) q1_new_policy = self.critic1.forward(state, actions) q2_new_policy = self.critic2.forward(state, actions) critic_value = T.min(q1_new_policy, q2_new_policy) critic_value = critic_value.view(-1) actor_loss = log_probs - critic_value actor_loss = T.mean(actor_loss) self.actor.optimizer.zero_grad() actor_loss.backward(retain_graph=True) self.actor.optimizer.step() self.critic1.optimizer.zero_grad() self.critic2.optimizer.zero_grad() q_hat = self.scale * reward + self.gamma * value_ q1_old_policy = self.critic1.forward(state, action).view(-1) q2_old_policy = self.critic2.forward(state, action).view(-1) critic_1_loss = .5 * F.mse_loss(q1_old_policy, q_hat) critic_2_loss = .5 * F.mse_loss(q2_old_policy, q_hat) critic_loss = critic_1_loss + critic_2_loss critic_loss.backward() self.critic1.optimizer.step() self.critic2.optimizer.step() self.update_network_parameters()