class TrainedBrain(): def __init__(self, parmas): self.num_actions = params['num_actions'] self.device = params['device'] self.path_model = params['path_model'] self.policy_net = QNetwork(self.num_actions).to(self.device) self.policy_net.load_state_dict( torch.load(self.path_model, map_location=self.device)) self.policy_net.eval() def decide_action(self, state): with torch.no_grad(): self.q_vals = self.policy_net( torch.from_numpy(state.copy()).float().to( self.device).unsqueeze(0)) return int(self.q_vals.max(1)[1].view(1, 1))
class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size # Q-Network self.qnetwork_local = QNetwork(state_size, action_size).to(device) self.qnetwork_target = QNetwork(state_size, action_size).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences states = torch.from_numpy(states).float().to(device) actions = torch.from_numpy(actions).long().to(device) rewards = torch.from_numpy(rewards).float().to(device) next_states = torch.from_numpy(next_states).float().to(device) dones = torch.from_numpy(dones).float().to(device) # Get max predicted Q values (for next states) from target model Q_targets_next = self.qnetwork_target(next_states).detach().max( 1)[0].unsqueeze(1) # Compute Q targets for current states Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Get expected Q values from local model Q_expected = self.qnetwork_local(states).gather(1, actions) # Compute loss loss = F.mse_loss(Q_expected, Q_targets) # Minimize the loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
class Agent(): '''Interacts and learns from the environment''' def __init__(self, state_size, action_size, seed): """Initialize an Agent object Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed(int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device) self.qnetwork_target = QNetwork(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # initialise the timestep (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in the replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps self.t_step = (self.t_step +1) % UPDATE_EVERY if self.t_step ==0: # Get random subset from the memory, but ONLY if there are enough samples if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy Params ------ state(array_like): current state eps(float): epsilon, epsilon-greedy action selection (to keep element of exploration) """ # convert the state from the Unity network into a torch tensor state = torch.from_numpy(state).float().unsqueeze(0).to(device) # Note to pass it through the deep network, we need to take the numpy array and: # 1 - convert it to torch array with from_numpy() # 2 - convert it to float 32 as that is what is expected. Use .float() # 3 - Add a dimension on axis 0 with .unsqueeze(0). Because pytorch expects a BATCH of 1 dimensional arrays # to be fed into its network. For example feeding in a batch of 64 arrays, each of length 37. In our case, # with reinforcement learning we are only feeding one at a time, but the network still expects it to be 2D. self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): """Update value paratmers of the deep-Q network using given batch of experience tuples Params ------ experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # get the max predicted Q values for the next states, from the target model # note: detach just detaches the tensor from the grad_fn - i.e. we are going to do some non-tracked # computations based on the value of this tensor (we DON'T update the target model at this stage) Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1) # compute Q targets for current states Q_targets = rewards + (gamma * Q_targets_next * (1-dones)) # Get expected Q values from local model Q_expected = self.qnetwork_local(states).gather(1, actions) # compute loss loss = F.mse_loss(Q_expected, Q_targets) # Minimise the loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() # update target network self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (Pytorch model): weights will be copied from taret_model (Pytorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau*local_param.data + (1.0-tau) * target_param.data)
class Brain: def __init__(self, params): self.num_actions = params['num_actions'] self.device = params['device'] self.batch_size = params['batch_size'] self.learning_rate = params['learning_rate'] self.gamma = params['gamma'] self.eps_start = params['eps_start'] self.eps_end = params['eps_end'] self.eps_decay = params['eps_decay'] self.policy_net = QNetwork(self.num_actions).to(self.device) self.target_net = QNetwork(self.num_actions).to(self.device) self.target_net.load_state_dict(self.policy_net.state_dict()) self.target_net.eval() self.memory = ReplayMemory(params['replay_memory_size']) self.optimizer = optim.Adam(self.policy_net.parameters(), lr=self.learning_rate) self.steps_done = 0 self.q_vals = [0] * self.num_actions self.loss = 0 def decide_action(self, state): eps_threshold = self.eps_end + ( self.eps_start - self.eps_end) * math.exp( -1. * self.steps_done / self.eps_decay) self.steps_done += 1 with torch.no_grad(): self.q_vals = self.policy_net( torch.from_numpy(state).float().to(self.device).unsqueeze(0)) sample = random.random() if sample > eps_threshold: with torch.no_grad(): return self.q_vals.max(1)[1].view(1, 1) else: return torch.tensor([[random.randrange(self.num_actions)]], device=self.device, dtype=torch.long) def optimize(self): transitions = self.memory.sample(self.batch_size) batch = Transition(*zip(*transitions)) non_final_mask = torch.tensor(tuple( map(lambda s: s is not None, batch.next_state)), device=self.device, dtype=torch.bool) non_final_next_states = torch.cat([ torch.tensor(s, device=self.device, dtype=torch.float) for s in batch.next_state if s is not None ]) state_batch = torch.cat( [torch.tensor(batch.state, device=self.device, dtype=torch.float)]) action_batch = torch.cat( [torch.tensor(batch.action, device=self.device, dtype=torch.long)]) reward_batch = torch.cat( [torch.tensor(batch.reward, device=self.device, dtype=torch.int)]) state_action_values = self.policy_net(state_batch).gather( 1, action_batch.unsqueeze(1)) next_state_values = torch.zeros(self.batch_size, device=self.device) next_state_values[non_final_mask] = self.target_net( non_final_next_states.unsqueeze(1)).max(1)[0].detach() expected_state_action_values = (next_state_values * self.gamma) + reward_batch self.loss = F.smooth_l1_loss(state_action_values, expected_state_action_values.unsqueeze(1)) self.optimizer.zero_grad() self.loss.backward() for param in self.policy_net.parameters(): param.grad.data.clamp_(-1, 1) self.optimizer.step() def update_target_network(self): self.target_net.load_state_dict(self.policy_net.state_dict())
class Agent: """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device) self.qnetwork_target = QNetwork(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ def loss_dqn(output, target): loss = target - output return (target - output)**2 states, actions, rewards, next_states, dones = experiences # Reset gradients # Calculate the value of the target in the next state pred = self.qnetwork_target(next_states) # (64, 4) target = rewards # (64, 1) for i in range(BATCH_SIZE): # Check for dones if dones[i] == False: target[i] = rewards[i] + GAMMA * torch.max(pred[i]) # The loss output = self.qnetwork_local(states) # Use gather in order to have the correct slicing output_action_value = output.gather(1, actions.view(-1, 1)) loss = loss_dqn(output_action_value, target).mean() # Reset gradients self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
class Agent(object): def __init__(self, state_size, action_size, seed, config): self.state_size = state_size self.action_size = action_size self.config = config self.seed = random.seed(seed) self.local_q_net = QNetwork(state_size, action_size, seed).to(device) self.target_q_net = QNetwork(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.local_q_net.parameters(), lr=config["LR"]) self.memory = ReplayBuffer(action_size, config["BUFFER_SIZE"], config["BATCH_SIZE"], seed) self.t_step = 0 def step(self, state, action, reward, next_state, done): self.memory.add(state, action, reward, next_state, done) self.t_step = (self.t_step + 1) % self.config["UPDATE_EVERY"] if self.t_step == 0: # if agent experienced enough if len(self.memory) > self.config["BATCH_SIZE"]: experiences = self.memory.sample() # Learn from previous experiences self.learn(experiences, self.config["GAMMA"]) def act(self, state, eps=0.0): state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.local_q_net.eval() with torch.no_grad(): action_values = self.local_q_net(state) self.local_q_net.train() if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): # Double Q Learning states, actions, rewards, next_states, dones = experiences # Get next action estimation with local q network q_targets_next_expected = self.local_q_net(next_states).detach() q_targets_next_expected_actions = q_targets_next_expected.max( 1)[1].unsqueeze(1) # Calculate Next Targets q_targets_next = self.target_q_net(next_states).gather( 1, q_targets_next_expected_actions) # Non over-estimated targets q_targets = rewards + (gamma * q_targets_next * (1 - dones)) # Expected value q_expected = self.local_q_net(states).gather(1, actions) loss = torch.nn.functional.mse_loss(q_expected, q_targets) self.optimizer.zero_grad() loss.backward() self.optimizer.step() self.soft_update(self.local_q_net, self.target_q_net, self.config["TAU"]) def soft_update(self, local_net, target_net, tau): for target_param, local_param in zip(target_net.parameters(), local_net.parameters()): target_param.data.copy_(tau * local_param.data + (1 - tau) * target_param.data)