np.random.seed(123) samples = np.zeros((N, p * p)) T = np.random.uniform(low=-np.pi / 2, high=np.pi / 2, size=N) for i in range(N): samples[i] = gaussian(shape=(p, p), sigma=(.5, 2), theta=T[i]).flatten() print 'Neural Gas' np.random.seed(123) ng = NG((n, n, p * p), init_method='fixed') ng.learn(samples, epochs, noise=0.1) print 'Self-Organizing Map' np.random.seed(123) som = SOM((n, n, p * p), init_method='fixed') som.learn(samples, epochs, noise=0.1) print 'Dynamic Self-Organizing Map' np.random.seed(123) dsom = DSOM((n, n, p * p), elasticity=1.5, init_method='fixed') dsom.learn(samples, epochs, noise=0.1) fig = plt.figure(figsize=(21, 8)) fig.patch.set_alpha(0.0) axes = plt.subplot(131, frameon=False) plot(ng, n, p) axes = plt.subplot(132, frameon=False) plot(som, n, p) axes = plt.subplot(133, frameon=False)
N = 5 np.random.seed(2) samples = np.zeros((N, 2)) #samples[:,0] = np.array([0.1, 0.1, 0.5, 0.9]) #samples[:,1] = np.array([0.1, 0.9, 0.5, 0.9]) samples[:, 0] = np.array([0.1, 0.1, 0.5, 0.9, 0.9]) samples[:, 1] = np.array([0.1, 0.9, 0.5, 0.1, 0.9]) print 'Neural Gas' np.random.seed(2) ng = NG((n, n, 2)) ng.learn(samples, epochs) print 'Self-Organizing Map' np.random.seed(2) som = SOM((n, n, 2)) som.learn(samples, epochs) print 'Dynamic Self-Organizing Map' np.random.seed(2) dsom = DSOM((n, n, 2), elasticity=1.0, lrate=0.1) #dsom = DSOM((n,n,2), elasticity=1.75) dsom.learn(samples, epochs) fig = plt.figure(figsize=(21, 8)) fig.patch.set_alpha(0.0) axes = plt.subplot(1, 3, 1) ng.plot(axes) axes = fig.add_subplot(1, 3, 2) som.plot(axes) axes = fig.add_subplot(1, 3, 3)
samples_1 = uniform(n=n, center=(0.25,0.25), scale=(0.25,0.25)) samples_2 = uniform(n=n, center=(0.75,0.75), scale=(0.25,0.25)) samples_3 = uniform(n=n, center=(0.25,0.75), scale=(0.25,0.25)) samples_4 = uniform(n=n, center=(0.75,0.25), scale=(0.25,0.25)) print 'Neural gas' np.random.seed(12345) ng = NG((size,size,2)) ng.learn([samples_1, samples_2, samples_3, samples_4], [2*epochs//8, 2*epochs//8, 2*epochs//8, 2*epochs//8]) print 'Self-Organizing Map' np.random.seed(12345) som = SOM((size,size,2)) som.learn([samples_1, samples_2, samples_3, samples_4], [2*epochs//8, 2*epochs//8, 2*epochs//8, 2*epochs//8]) print 'Dynamic Self-Organizing Map' np.random.seed(12345) dsom = DSOM((size,size,2), elasticity=2.5) dsom.learn([samples_1, samples_2, samples_3, samples_4], [2*epochs//8, 2*epochs//8, 2*epochs//8, 2*epochs//8]) fig = plt.figure(figsize=(21,8)) fig.patch.set_alpha(0.0) axes = plt.subplot(1,3,1) ng.plot(axes) axes = plt.subplot(1,3,2)