Пример #1
0
    def __init__(self,in_channels, out_channels, num_features, bp_stages, upscale_factor=4, norm_type=None, act_type='prelu'):
        super(DBPN, self).__init__()

        if upscale_factor == 2:
            stride = 2
            padding = 2
            projection_filter = 6
        elif upscale_factor == 4:
            stride = 4
            padding = 2
            projection_filter = 8
        elif upscale_factor == 8:
            stride = 8
            padding = 2
            projection_filter = 12

        feature_extract_1 = B.ConvBlock(in_channels, 128, kernel_size=3, norm_type=norm_type, act_type=act_type)
        feature_extract_2 = B.ConvBlock(128, num_features, kernel_size=1, norm_type=norm_type, act_type=act_type)

        bp_units = []
        for _ in range(bp_stages-1):
            bp_units.extend([B.UpprojBlock(num_features, num_features, projection_filter, stride=stride, valid_padding=False,
                                                padding=padding, norm_type=norm_type, act_type=act_type),
                            B.DownprojBlock(num_features, num_features, projection_filter, stride=stride, valid_padding=False,
                                                  padding=padding, norm_type=norm_type, act_type=act_type)])

        last_bp_unit = B.UpprojBlock(num_features, num_features, projection_filter, stride=stride, valid_padding=False,
                                           padding=padding, norm_type=norm_type, act_type=act_type)
        conv_hr = B.ConvBlock(num_features, out_channels, kernel_size=1, norm_type=None, act_type=None)

        self.network = B.sequential(feature_extract_1, feature_extract_2, *bp_units, last_bp_unit, conv_hr)
Пример #2
0
    def __init__(self,in_channels, out_channels, num_features, bp_stages, upscale_factor=4, norm_type=None, act_type='prelu'):
        super(D_DBPN, self).__init__()

        if upscale_factor == 2:
            stride = 2
            padding = 2
            projection_filter = 6
        elif upscale_factor == 4:
            stride = 4
            padding = 2
            projection_filter = 8
        elif upscale_factor == 8:
            stride = 8
            padding = 2
            projection_filter = 12

        feature_extract_1 = B.ConvBlock(in_channels, 256, kernel_size=3, norm_type=norm_type, act_type=act_type)
        feature_extract_2 = B.ConvBlock(256, num_features, kernel_size=1, norm_type=norm_type, act_type=act_type)

        bp_units = B.DensebackprojBlock(num_features, num_features, projection_filter, bp_stages, stride=stride, valid_padding=False,
                                                padding=padding, norm_type=norm_type, act_type=act_type)

        conv_hr = B.ConvBlock(num_features*bp_stages, out_channels, kernel_size=3, norm_type=None, act_type=None)

        self.network = B.sequential(feature_extract_1, feature_extract_2, bp_units, conv_hr)