Пример #1
0
    print('Using config:')
    pprint.pprint(cfg)

    while not os.path.exists(args.model) and args.wait:
        print('Waiting for {} to exist...'.format(args.model))
        time.sleep(10)

    weights_filename = os.path.splitext(os.path.basename(args.model))[0]

    imdb = get_imdb(args.imdb_name)
    imdb.competition_mode(args.comp_mode)

    cfg.GPU_ID = args.gpu_id
    device_name = '/gpu:{:d}'.format(args.gpu_id)
    print device_name

    network = get_network(args.network_name, args.pretrained_model)
    print 'Use network `{:s}` in training'.format(args.network_name)

    # build the network
    network.data = tf.placeholder(tf.float32, shape=[None, None, None, 3])
    network.build(network.data, train=False, num_classes=imdb.num_classes)

    # start a session
    saver = tf.train.Saver()
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    saver.restore(sess, args.model)
    print ('Loading model weights from {:s}').format(args.model)

    test_net(sess, network, imdb, weights_filename)
Пример #2
0
    # the map from dataset name to the dataset is set and store in the /datasets/factory.py
    # guess that factory.py should run first
    imdb = get_imdb(args.imdb_name)
    print 'Loaded dataset `{:s}` for training'.format(imdb.name)

    #**************************************
    # load original images and groundtruth
    #**************************************
    roidb = get_training_roidb(imdb)

    if cfg.DEBUG:
        for key in roidb[0]:
            print key
        
    # output_dir = get_output_dir(imdb, None)
    output_dir = "/z/home/chsiyuan/Documents/542FinalProject/experiments/results/train"
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    print 'Output will be saved to `{:s}`'.format(output_dir)

    device_name = '/{}:{:d}'.format(args.device,args.device_id)
    print device_name

    network = get_network(args.network_name)
    print 'Use network `{:s}` in training'.format(args.network_name)

    train_net(network, imdb, roidb, output_dir,
              pretrained_model=args.pretrained_model,
              max_iters=args.max_iters)
Пример #3
0
    return args


if __name__ == '__main__':
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals

    args = parse_args()

    if args.model == ' ':
        raise IOError(('Error: Model not found.\n'))

    # init session
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # load network
    net = get_network(args.demo_net)
    # load model
    saver = tf.train.Saver(write_version=tf.train.SaverDef.V1)
    saver.restore(sess, args.model)

    #sess.run(tf.initialize_all_variables())

    print '\n\nLoaded network {:s}'.format(args.model)

    # Warmup on a dummy image
    im = 128 * np.ones((300, 300, 3), dtype=np.uint8)
    for i in xrange(2):
        _, _ = im_detect(sess, net, im)

    im_names = [
        '000456.jpg', '000542.jpg', '001150.jpg', '001763.jpg', '004545.jpg'
Пример #4
0
    output_dir = '../data/test/result'
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    print 'Output will be saved to `{:s}`'.format(output_dir)

    #*******************
    #  Need to change
    #*******************
    input_dir = '../data/test/images/'
    if not os.path.exists(input_dir):
        raise IOError(('Error: Input not found.\n'))
        
    # init session
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # load network
    net = get_network(args.demo_net)
    # load model
    saver = tf.train.Saver(write_version=tf.train.SaverDef.V1)
    saver.restore(sess, args.model)
   
    #sess.run(tf.initialize_all_variables())

    print '\n\nLoaded network {:s}'.format(args.model)

    # Warmup on a dummy image
    # im = 128 * np.ones((300, 300, 3), dtype=np.uint8)
    # for i in xrange(2):
    #     _, _= im_detect(sess, net, im)

    images = os.listdir(input_dir) 
    deformed_mask_name = '../data/test/masks/deformation_train_000000000030.png'
Пример #5
0
    return args


if __name__ == '__main__':
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals

    args = parse_args()

    if args.model == ' ':
        raise IOError(('Error: Model not found.\n'))

    # init session
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # load network
    net = get_network(args.demo_net, state='TEST')
    # load model
    saver = tf.train.Saver(write_version=tf.train.SaverDef.V1)
    saver.restore(sess, args.model)

    #sess.run(tf.initialize_all_variables())

    print '\n\nLoaded network {:s}'.format(args.model)

    im_names = ['000.jpg', '001.jpg', '002.jpg',
                '010.jpg']  # Let's see if we can overfit

    for im_name in im_names:
        print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
        print 'Demo for data/demo/{}'.format(im_name)
        demo(sess, net, im_name)
Пример #6
0
        cfg_from_list(args.set_cfgs)

    print('Using config:')
    pprint.pprint(cfg)

    if not args.randomize:
        # fix the random seeds (numpy and caffe) for reproducibility
        np.random.seed(cfg.RNG_SEED)
    imdb = get_imdb(args.imdb_name)  # everything ok so far - no data twice

    print 'Loaded dataset `{:s}` for training'.format(imdb.name)

    print(len(imdb.image_index))  # 178 which is correct
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    print 'Output will be saved to `{:s}`'.format(output_dir)

    device_name = '/gpu:{:d}'.format(args.gpu_id)
    print device_name

    network = get_network(args.network_name)
    print 'Use network `{:s}` in training'.format(args.network_name)

    train_net(network,
              imdb,
              roidb,
              output_dir,
              pretrained_model=args.pretrained_model,
              max_iters=args.max_iters)
    if not args.randomize:
        # fix the random seeds (numpy and caffe) for reproducibility
        np.random.seed(cfg.RNG_SEED)
    imdb = get_imdb(args.imdb_name)
    print 'Loaded dataset `{:s}` for training'.format(imdb.name)
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    print 'Output will be saved to `{:s}`'.format(output_dir)

    device_name = '/{}:{:d}'.format(args.device,args.device_id)
    print device_name


    with tf.variable_scope("build") as scope:
        network = get_network(args.network_name)
        scope.reuse_variables()
        network1 = get_network(args.network_name)
        scope.reuse_variables()
        network2 = get_network(args.network_name)
        scope.reuse_variables()
        network3 = get_network(args.network_name)
        scope.reuse_variables()
        network4 = get_network(args.network_name)
        scope.reuse_variables()
        network5 = get_network(args.network_name)
        scope.reuse_variables()
        network6 = get_network(args.network_name)
        scope.reuse_variables()
        network7 = get_network(args.network_name)
        scope.reuse_variables()
Пример #8
0
    return args


if __name__ == '__main__':
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals

    args = parse_args()

    if args.model == ' ':
        raise IOError(('Error: Model not found.\n'))

    # init session
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # load network
    path = "/home/surajit/Desktop/Faster-RCNN-COCO_TF/lib/networks/VGGnet_test.py"
    net = get_network(path)
    print("name", net)
    # load model
    saver = tf.train.Saver()
    saver.restore(sess, args.model)

    print('\n\nLoaded network {:s}'.format(args.model))

    im_names = [
        '000456.jpg', '000542.jpg', '001150.jpg', '001763.jpg', '004545.jpg'
    ]

    img_path = args.img_path
    img_paths = glob.glob(img_path + "/*")

    for img in img_paths:
Пример #9
0
def get_context_profiles(set_dirs, sub_dirs, p_scale=1):
    train_set_07 = 'voc_2007_train'
    val_set_07 = 'voc_2007_val'
    train_set_12 = 'voc_2012_train'
    val_set_12 = 'voc_2012_val'
    test_set = "voc_2007_test"

    net_name = "VGGnet"
    net_final = '../output/faster_rcnn_end2end/voc_2007_trainval+voc_2012_trainval/VGGnet_wt_context/VGGnet_wt_context.ckpt'

    # some configuration
    extra_config = "../experiments/cfgs/faster_rcnn_end2end.yml"
    cfg_from_file(extra_config)

    print('[build the graph...]')
    net = get_network(net_name + "_test")
    saver = tf.train.Saver()
    fetch_list = [
        net.relation,
        net.get_output('rois'),
        net.get_output('cls_prob'),
        net.get_output('bbox_pred')
    ]

    print('[build the session...]')
    config = tf.ConfigProto(allow_soft_placement=True)
    sess = tf.Session(config=config)

    print(
        '[initialize the graph parameter & restore from pre-trained file...]')
    sess.run(tf.global_variables_initializer())
    saver.restore(sess, net_final)
    print('Loading model weights from {:s}'.format(net_final))

    # Note that is is not necessary to collect all the context profiles, just stop the running
    # if you have got enough training/testing samples.

    im_set = list(
        open('../data/VOCdevkit/VOC2007/ImageSets/Main/train.txt', 'r'))
    im_set = [int(idx.strip()) for idx in im_set]
    get_clean_nodes_helper(im_set, train_set_07, sess, net, fetch_list,
                           set_dirs[0], sub_dirs)

    im_set = list(open('../data/VOCdevkit/VOC2007/ImageSets/Main/val.txt',
                       'r'))
    im_set = [int(idx.strip()) for idx in im_set]
    get_clean_nodes_helper(im_set, val_set_07, sess, net, fetch_list,
                           set_dirs[0], sub_dirs)

    im_set = list(
        open('../data/VOCdevkit/VOC2012/ImageSets/Main/train.txt', 'r'))
    im_set = [idx.strip() for idx in im_set]
    get_clean_nodes_helper(im_set, train_set_12, sess, net, fetch_list,
                           set_dirs[0], sub_dirs)

    im_set = list(open('../data/VOCdevkit/VOC2012/ImageSets/Main/val.txt',
                       'r'))
    im_set = [idx.strip() for idx in im_set]
    get_clean_nodes_helper(im_set, val_set_12, sess, net, fetch_list,
                           set_dirs[0], sub_dirs)

    im_set = list(
        open('../data/VOCdevkit/VOC2007/ImageSets/Main/test.txt', 'r'))
    im_set = [int(idx.strip()) for idx in im_set]
    get_clean_nodes_helper(im_set, test_set, sess, net, fetch_list,
                           set_dirs[1], sub_dirs)

    p = 1
    p_list_dir = '../attack_detector/script_extract_files'
    p_list_name = 'digital_miscls.txt'
    im_set = list(
        open('../data/VOCdevkit/VOC2007/ImageSets/Main/test.txt', 'r'))
    im_set = [int(idx.strip()) for idx in im_set]
    get_p_nodes_helper(im_set,
                       test_set,
                       sess,
                       net,
                       fetch_list,
                       set_dirs[2],
                       sub_dirs,
                       p_list_dir,
                       p_list_name,
                       p=p)

    p_list_dir = '../attack_detector/script_extract_files'
    p_list_name = 'digital_hiding.txt'
    im_set = list(
        open('../data/VOCdevkit/VOC2007/ImageSets/Main/test.txt', 'r'))
    im_set = [int(idx.strip()) for idx in im_set]
    get_p_nodes_helper(im_set,
                       test_set,
                       sess,
                       net,
                       fetch_list,
                       set_dirs[3],
                       sub_dirs,
                       p_list_dir,
                       p_list_name,
                       p=p)

    p_list_dir = '../attack_detector/script_extract_files'
    p_list_name = 'digital_appear.txt'
    im_set = list(
        open('../data/VOCdevkit/VOC2007/ImageSets/Main/test.txt', 'r'))
    im_set = [int(idx.strip()) for idx in im_set]
    get_p_nodes_helper_appear(im_set,
                              test_set,
                              sess,
                              net,
                              fetch_list,
                              set_dirs[4],
                              sub_dirs,
                              p_list_dir,
                              p_list_name,
                              p=p)

    p_list_dir = '../attack_detector/script_extract_files'
    p_list_name = 'physical_miscls.txt'
    im_set = list(
        open('../data/VOCdevkit/VOC2007/ImageSets/Main/test.txt', 'r'))
    im_set = [int(idx.strip()) for idx in im_set]
    get_p_nodes_helper(im_set,
                       test_set,
                       sess,
                       net,
                       fetch_list,
                       set_dirs[5],
                       sub_dirs,
                       p_list_dir,
                       p_list_name,
                       p=p)

    p_list_dir = '../attack_detector/script_extract_files'
    p_list_name = 'physical_hiding.txt'
    im_set = list(
        open('../data/VOCdevkit/VOC2007/ImageSets/Main/test.txt', 'r'))
    im_set = [int(idx.strip()) for idx in im_set]
    get_p_nodes_helper(im_set,
                       test_set,
                       sess,
                       net,
                       fetch_list,
                       set_dirs[6],
                       sub_dirs,
                       p_list_dir,
                       p_list_name,
                       p=p)

    p_list_dir = '../attack_detector/script_extract_files'
    p_list_name = 'physical_appear.txt'
    im_set = list(
        open('../data/VOCdevkit/VOC2007/ImageSets/Main/test.txt', 'r'))
    im_set = [int(idx.strip()) for idx in im_set]
    get_p_nodes_helper_appear(im_set,
                              test_set,
                              sess,
                              net,
                              fetch_list,
                              set_dirs[7],
                              sub_dirs,
                              p_list_dir,
                              p_list_name,
                              p=p)
Пример #10
0

if __name__ == '__main__':
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals
    os.environ['CUDA_VISIBLE_DEVICES'] = '8'
    args = parse_args()

    if args.model == ' ':
        raise IOError(('Error: Model not found.\n'))

    # init session
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # load network
    #net = get_network(args.demo_net)
    with tf.variable_scope("build") as scope:
        net = get_network('VGG_test')
        scope.reuse_variables()
        network1 = get_network('VGG_test')
        scope.reuse_variables()
        network2 = get_network('VGG_test')
        scope.reuse_variables()
        network3 = get_network('VGG_test')
        scope.reuse_variables()
        network4 = get_network('VGG_test')
        scope.reuse_variables()
        network5 = get_network('VGG_test')
        scope.reuse_variables()
        network6 = get_network('VGG_test')
        scope.reuse_variables()
        network7 = get_network('VGG_test')
        scope.reuse_variables()
Пример #11
0
        cfg.USE_GPU_NMS = False
    if not args.randomize:
        # fix the random seeds (numpy and caffe) for reproducibility
        np.random.seed(cfg.RNG_SEED)

    target_imdb = get_imdb(args.target_imdb_name)
    target_imdb.competition_mode(args.comp_mode)
    print 'Loaded dataset `{:s}` for training'.format(target_imdb.name)
    target_roidb = get_training_roidb(target_imdb)

    source_imdb = get_imdb(args.source_imdb_name)
    source_imdb.competition_mode(args.comp_mode)
    print 'Loaded dataset `{:s}` for training'.format(source_imdb.name)
    source_roidb = get_training_roidb(source_imdb)

    target_network = get_network(args.target_network_name)
    print 'Use network `{:s}` in training'.format(args.target_network_name)
    target_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                    scope='target')

    source_network = get_network(args.source_network_name)
    print 'Use network `{:s}` in training'.format(args.source_network_name)
    source_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                    scope='source')

    target_roidb = filter_roidb(target_roidb)
    source_roidb = filter_roidb(source_roidb)

    target_restorer = tf.train.Saver(var_list=target_vars,
                                     write_version=tf.train.SaverDef.V1)
    source_restorer = tf.train.Saver(var_list=source_vars,
Пример #12
0
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals

    args = parse_args()

    if args.model == ' ':
        raise IOError(('Error: Model not found.\n'))

    if args.jpg == '':
        raise IOError(('Error: No image for detection'))

    imdb = get_imdb(args.imdb)

    # init session
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # load network
    net = get_network(args.demo_net, len(CLASSES))
    # load model
    saver = tf.train.Saver(write_version=tf.train.SaverDef.V1)
    saver.restore(sess, args.model)

    #sess.run(tf.initialize_all_variables())

    print '\n\nLoaded network {:s}'.format(args.model)

    # Warmup on a dummy image
    im = 128 * np.ones((300, 300, 3), dtype=np.uint8)
    for i in xrange(2):
        _, _ = im_detect(sess, net, im)

#    im_names = ['000456.jpg', '000542.jpg', '001150.jpg',
#                '001763.jpg', '004545.jpg']
Пример #13
0
def viz_net(net_name, weight_name, imdb, viz_mode='viz_cls'):
    sess = tf.Session()

    # set up testing mode
    rois = tf.placeholder(dtype=tf.float32, shape=[None, 5], name='rois')
    rel_rois = tf.placeholder(dtype=tf.float32, shape=[None, 5], name='rois')
    ims = tf.placeholder(dtype=tf.float32,
                         shape=[None, None, None, 3],
                         name='ims')
    relations = tf.placeholder(dtype=tf.int32,
                               shape=[None, 2],
                               name='relations')

    inputs = {
        'rois': rois,
        'rel_rois': rel_rois,
        'ims': ims,
        'relations': relations,
        'num_roi': tf.placeholder(dtype=tf.int32, shape=[]),
        'num_rel': tf.placeholder(dtype=tf.int32, shape=[]),
        'num_classes': imdb.num_classes,
        'num_predicates': imdb.num_predicates,
        'rel_mask_inds': tf.placeholder(dtype=tf.int32, shape=[None]),
        'rel_segment_inds': tf.placeholder(dtype=tf.int32, shape=[None]),
        'rel_pair_mask_inds': tf.placeholder(dtype=tf.int32, shape=[None, 2]),
        'rel_pair_segment_inds': tf.placeholder(dtype=tf.int32, shape=[None]),
        'quadric_rois': tf.placeholder(dtype=tf.float32, shape=[None, 25]),
        'n_iter': cfg.TEST.INFERENCE_ITER
    }

    net = get_network(net_name)(inputs)
    net.setup()
    print('Loading model weights from {:s}').format(weight_name)
    saver = tf.train.Saver()
    saver.restore(sess, weight_name)
    roidb = imdb.roidb
    if cfg.TEST.USE_RPN_DB:
        imdb.add_rpn_rois(roidb, make_copy=False)
    prepare_roidb(roidb)

    num_images = len(imdb.image_index)

    if net.iterable:
        inference_iter = net.n_iter - 1
    else:
        inference_iter = 0
    print('=======================VIZ INFERENCE Iteration = '),
    print(inference_iter)
    print('=======================VIZ MODES = '),
    print(viz_mode)
    rec = 0
    for im_i in range(num_images):
        print('processing image ' + str(im_i) + '/' + str(num_images))
        im = imdb.im_getter(im_i)

        bbox_reg = True
        if viz_mode == 'viz_cls':
            # use ground truth bounding boxes
            bbox_reg = False
            box_proposals = gt_rois(roidb[im_i])
        elif viz_mode == 'viz_det':
            # use RPN-proposed object locations
            box_proposals, roi_scores = non_gt_rois(roidb[im_i])
            roi_scores = np.expand_dims(roi_scores, axis=1)
            nms_keep = cpu_nms(
                np.hstack((box_proposals, roi_scores)).astype(np.float32),
                cfg.TEST.PROPOSAL_NMS)
            nms_keep = np.array(nms_keep)
            num_proposal = min(cfg.TEST.NUM_PROPOSALS, nms_keep.shape[0])
            keep = nms_keep[:num_proposal]
            box_proposals = box_proposals[keep, :]
        else:
            raise NotImplementedError(
                'Incorrect visualization mode. Choose between [cls] and [det]')
        if box_proposals.size == 0 or box_proposals.shape[0] < 2:
            print 'skipping image', im_i
            continue
        #import pdb; pdb.set_trace()
        quadric_rois = np.vstack(
            [roidb[im_i]['quadric_rois'], roidb[im_i]['quadric_rois']]
        )  # this duplication, I don't know why, but the boxes are duplicated, so I did the same, maybe it is to evaluate different aspect
        quadric_rois = np.hstack(
            [np.zeros((quadric_rois.shape[0], 1)), quadric_rois]
        )  #this is because in the training phase, the image number is appended
        out_dict = im_detect(sess, net, inputs, im, box_proposals, bbox_reg,
                             [inference_iter], quadric_rois)
        sg_entry = out_dict[inference_iter]
        # ground predicted graphs to ground truth annotations
        gt_to_pred = ground_predictions(sg_entry, roidb[im_i], 0.5)
        gt_rel = roidb[im_i]['gt_relations']
        pred_rel = np.argmax(sg_entry['relations'], 2)
        if roidb[im_i]['gt_relations'][0][2] == pred_rel[
                roidb[im_i]['gt_relations'][0][0],
                roidb[im_i]['gt_relations'][0][1]]:
            rec += 0.5
        if roidb[im_i]['gt_relations'][1][2] == pred_rel[
                roidb[im_i]['gt_relations'][1][0],
                roidb[im_i]['gt_relations'][1][1]]:
            rec += 0.5
        #my_draw_graph_pred(im, sg_entry['boxes'], sg_entry['scores'], sg_entry['relations'], gt_to_pred, roidb[im_i], im_i)
    print 'recall', rec / num_images