input_embeddings, update_embeddings = update_embeddings, hidden_dim = hidden_dim, order = 3, ) elif args["lstm"]: net = networks.LSTM( model, input_embeddings, update_embeddings = update_embeddings, hidden_dim = hidden_dim, ) elif args["bow"]: net = networks.BOW( model, input_embeddings, update_embeddings = update_embeddings, hidden_dim = hidden_dim, ) elif args["tree-lstm"]: input_embeddings = np.load("data/dicteval/input_embeddings_parsed.reduced.npy") net = networks.CYK( model, input_embeddings, update_embeddings = update_embeddings, hidden_dim = hidden_dim, ) parsed = True if args["--restart"]: restart = int(args["--restart"]) else:
input_embeddings, update_embeddings=False, hidden_dim=100, order=3, ) elif args["lstm"]: net = networks.LSTM( model, input_embeddings, update_embeddings=False, hidden_dim=100, ) elif args["bow"]: net = networks.BOW( model, input_embeddings, update_embeddings=False, hidden_dim=100, ) elif args["tree-lstm"]: net = networks.CYK( model, input_embeddings, update_embeddings=False, hidden_dim=100, ) parsed = True classifier = networks.SNLIClassifier(model, input_embeddings.shape[1]) model.load(args["<model-file>"]) print(eval_nli_dataset(net, classifier, test, parsed))