update_embeddings = update_embeddings, hidden_dim = hidden_dim, order = 2, ) elif args["rand-cyk"]: net = networks.CYK( model, input_embeddings, update_embeddings = update_embeddings, hidden_dim = hidden_dim, order = 3, ) elif args["lstm"]: net = networks.LSTM( model, input_embeddings, update_embeddings = update_embeddings, hidden_dim = hidden_dim, ) elif args["bow"]: net = networks.BOW( model, input_embeddings, update_embeddings = update_embeddings, hidden_dim = hidden_dim, ) elif args["tree-lstm"]: input_embeddings = np.load("data/dicteval/input_embeddings_parsed.reduced.npy") net = networks.CYK( model, input_embeddings, update_embeddings = update_embeddings,
update_embeddings=False, hidden_dim=100, order=2, ) elif args["rand-cyk"]: net = networks.CYK( model, input_embeddings, update_embeddings=False, hidden_dim=100, order=3, ) elif args["lstm"]: net = networks.LSTM( model, input_embeddings, update_embeddings=False, hidden_dim=100, ) elif args["bow"]: net = networks.BOW( model, input_embeddings, update_embeddings=False, hidden_dim=100, ) elif args["tree-lstm"]: net = networks.CYK( model, input_embeddings, update_embeddings=False, hidden_dim=100,