Пример #1
0
         update_embeddings = update_embeddings,
         hidden_dim = hidden_dim,
         order = 2,
     )
 elif args["rand-cyk"]:
     net = networks.CYK(
         model,
         input_embeddings,
         update_embeddings = update_embeddings,
         hidden_dim = hidden_dim,
         order = 3,
     )
 elif args["lstm"]:
     net = networks.LSTM(
         model,
         input_embeddings,
         update_embeddings = update_embeddings,
         hidden_dim = hidden_dim,
     )
 elif args["bow"]:
     net = networks.BOW(
         model,
         input_embeddings,
         update_embeddings = update_embeddings,
         hidden_dim = hidden_dim,
     )
 elif args["tree-lstm"]:
     input_embeddings = np.load("data/dicteval/input_embeddings_parsed.reduced.npy")
     net = networks.CYK(
         model,
         input_embeddings,
         update_embeddings = update_embeddings,
Пример #2
0
         update_embeddings=False,
         hidden_dim=100,
         order=2,
     )
 elif args["rand-cyk"]:
     net = networks.CYK(
         model,
         input_embeddings,
         update_embeddings=False,
         hidden_dim=100,
         order=3,
     )
 elif args["lstm"]:
     net = networks.LSTM(
         model,
         input_embeddings,
         update_embeddings=False,
         hidden_dim=100,
     )
 elif args["bow"]:
     net = networks.BOW(
         model,
         input_embeddings,
         update_embeddings=False,
         hidden_dim=100,
     )
 elif args["tree-lstm"]:
     net = networks.CYK(
         model,
         input_embeddings,
         update_embeddings=False,
         hidden_dim=100,