def __init__(self, hyperparameters): super(MUNIT_Trainer, self).__init__() lr = hyperparameters['lr'] # Initiate the networks self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain a self.gen_b = AdaINGen(hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b self.dis_a = MsImageDis(hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain a self.dis_b = MsImageDis(hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator for domain b self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim'] # fix the noise used in sampling display_size = int(hyperparameters['display_size']) self.s_a = torch.randn(display_size, self.style_dim, 1, 1).cuda() self.s_b = torch.randn(display_size, self.style_dim, 1, 1).cuda() # Setup the optimizers beta1 = 0.5 beta2 = 0.999 dis_params = list(self.dis_a.parameters()) + list(self.dis_b.parameters()) gen_params = list(self.gen_a.parameters()) + list(self.gen_b.parameters()) self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.dis_scheduler = lr_scheduler.StepLR(self.dis_opt, step_size=hyperparameters['step_size'], gamma=hyperparameters['gamma'], last_epoch=-1) self.gen_scheduler = lr_scheduler.StepLR(self.gen_opt, step_size=hyperparameters['step_size'], gamma=hyperparameters['gamma'], last_epoch=-1) # Network weight initialization self.apply(weights_init(hyperparameters['init'])) self.dis_a.apply(weights_init('gaussian')) self.dis_b.apply(weights_init('gaussian'))
def __init__(self, hyperparameters): super(MUNIT_Trainer, self).__init__() lr = hyperparameters['lr'] # Initiate the networks self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain a self.gen_b = AdaINGen(hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b self.dis_a = MsImageDis(hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain a self.dis_b = MsImageDis(hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator for domain b self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim'] self.criterionGAN = GANLoss(hyperparameters['dis']['gan_type']).cuda() self.featureLoss = nn.MSELoss(reduction='mean') # fix the noise used in sampling display_size = int(hyperparameters['display_size']) self.s_a = torch.randn(display_size, self.style_dim, 1, 1).cuda() self.s_b = torch.randn(display_size, self.style_dim, 1, 1).cuda() # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list(self.dis_a.parameters()) + list(self.dis_b.parameters()) gen_params = list(self.gen_a.parameters()) + list(self.gen_b.parameters()) self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) # Network weight initialization self.apply(weights_init(hyperparameters['init'])) self.dis_a.apply(weights_init('gaussian')) self.dis_b.apply(weights_init('gaussian'))
def __init__(self, hyperparameters): super(DSMAP_Trainer, self).__init__() # Initiate the networks mid_downsample = hyperparameters['gen'].get('mid_downsample', 1) self.content_enc = ContentEncoder_share( hyperparameters['gen']['n_downsample'], mid_downsample, hyperparameters['gen']['n_res'], hyperparameters['input_dim_a'], hyperparameters['gen']['dim'], 'in', hyperparameters['gen']['activ'], pad_type=hyperparameters['gen']['pad_type']) self.style_dim = hyperparameters['gen']['style_dim'] self.gen_a = AdaINGen( hyperparameters['input_dim_a'], self.content_enc, 'a', hyperparameters['gen']) # auto-encoder for domain a self.gen_b = AdaINGen( hyperparameters['input_dim_b'], self.content_enc, 'b', hyperparameters['gen']) # auto-encoder for domain b self.dis_a = MsImageDis( hyperparameters['input_dim_a'], self.content_enc.output_dim, hyperparameters['dis']) # discriminator for domain a self.dis_b = MsImageDis( hyperparameters['input_dim_b'], self.content_enc.output_dim, hyperparameters['dis']) # discriminator for domain b
def __init__(self, hyperparameters, device): super(MUNIT_Trainer, self).__init__() lr = hyperparameters['lr'] self.device = device # Initiate the networks self.gen_a = AdaINGen( hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain a self.gen_b = AdaINGen( hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b self.dis_a = MsImageDis( hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain a self.dis_b = MsImageDis( hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator for domain b self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim'] # fix the noise used in sampling display_size = int(hyperparameters['display_size']) self.s_a = torch.randn(display_size, self.style_dim, 1, 1).to(self.device) self.s_b = torch.randn(display_size, self.style_dim, 1, 1).to(self.device) # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list(self.dis_a.parameters()) + list( self.dis_b.parameters()) gen_params = list(self.gen_a.parameters()) + list( self.gen_b.parameters()) self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) # Network weight initialization self.apply(weights_init(hyperparameters['init'])) self.dis_a.apply(weights_init('gaussian')) self.dis_b.apply(weights_init('gaussian')) # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False
def __init__(self, hyperparameters): super(aclgan_Trainer, self).__init__() lr = hyperparameters['lr'] # Initiate the networks self.gen_AB = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain A self.gen_BA = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain B self.dis_A = MsImageDis(hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain A self.dis_B = MsImageDis(hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain B self.dis_2 = MsImageDis(hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator 2 # self.dis_2B = MsImageDis(hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator 2 for domain B self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim'] # fix the noise used in sampling display_size = int(hyperparameters['display_size']) self.z_1 = torch.randn(display_size, self.style_dim, 1, 1).cuda() self.z_2 = torch.randn(display_size, self.style_dim, 1, 1).cuda() self.z_3 = torch.randn(display_size, self.style_dim, 1, 1).cuda() # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list(self.dis_A.parameters()) + list(self.dis_B.parameters()) + list(self.dis_2.parameters()) gen_params = list(self.gen_AB.parameters()) + list(self.gen_BA.parameters()) self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) self.alpha = hyperparameters['alpha'] self.focus_lam = hyperparameters['focus_loss'] # Network weight initialization self.apply(weights_init(hyperparameters['init'])) self.dis_A.apply(weights_init('gaussian')) self.dis_B.apply(weights_init('gaussian')) self.dis_2.apply(weights_init('gaussian')) # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False
def __init__(self, hyperparameters): super(MUNIT_Trainer, self).__init__() # super() 函数是用于调用父类(超类)的一个方法。 lr = hyperparameters['lr'] # Initiate the networks, 需要好好看看生成器和鉴别器到底是如何构造的 self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain a self.gen_b = AdaINGen(hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b self.dis_a = MsImageDis(hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain a self.dis_b = MsImageDis(hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator for domain b # https://blog.csdn.net/liuxiao214/article/details/81037416 self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim'] # fix the noise used in sampling display_size = int(hyperparameters['display_size']) # s_a , s_b 表示的是两个不同的style self.s_a = torch.randn(display_size, self.style_dim, 1, 1).cuda() # 16*8*1*1 self.s_b = torch.randn(display_size, self.style_dim, 1, 1).cuda() # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] # 两个鉴别器 dis_params = list(self.dis_a.parameters()) + list(self.dis_b.parameters()) # 两个生成器 gen_params = list(self.gen_a.parameters()) + list(self.gen_b.parameters()) # 优化器 self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) # 优化策略 self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) # Network weight initialization # 解释 apply apply(lambda x,y : x+y, (1),{'y' : 2}) https://zhuanlan.zhihu.com/p/42756654 self.apply(weights_init(hyperparameters['init'])) # 初始化当前类 self.dis_a.apply(weights_init('gaussian')) # 初始化dis_a,是一个类对象 self.dis_b.apply(weights_init('gaussian')) # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False
def __init__(self, hyperparameters): super(MUNIT, self).__init__() lr = hyperparameters['lr'] # Initiate the networks self.gen_a = AdaINGen( hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain a self.gen_b = AdaINGen( hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b self.dis_a = MsImageDis( hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain a self.dis_b = MsImageDis( hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator for domain b self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim']
def build_model(self): self.G = AdaINGen(self.label_dim, self.gen_var) self.D = Discriminator(self.label_dim, self.dis_var) self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.lr, [self.beta1, self.beta2]) self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.lr, [self.beta1, self.beta2]) self.G.to(self.device) self.D.to(self.device)
def __init__(self, hyperparameters, opts): super(MUNIT_Trainer, self).__init__() lr = hyperparameters['lr'] self.opts = opts # Initiate the networks self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain a self.gen_b = AdaINGen(hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b self.dis_a = MsImageDis(hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain a self.dis_b = MsImageDis(hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator for domain b self.seg = segmentor(num_classes=2, channels=hyperparameters['input_dim_b'], hyperpars=hyperparameters['seg']) self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim'] # fix the noise used in sampling display_size = int(hyperparameters['display_size']) self.s_a = torch.randn(display_size, self.style_dim, 1, 1).cuda() self.s_b = torch.randn(display_size, self.style_dim, 1, 1).cuda() # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list(self.dis_a.parameters()) + list(self.dis_b.parameters()) gen_params = list(self.gen_a.parameters()) + list(self.gen_b.parameters()) self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.seg_opt = torch.optim.SGD(self.seg.parameters(), lr=0.01, momentum=0.9, weight_decay=1e-4) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters['lr_policy'], hyperparameters=hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters['lr_policy'], hyperparameters=hyperparameters) self.seg_scheduler = get_scheduler(self.seg_opt, 'constant', hyperparameters=None) # Network weight initialization self.apply(weights_init(hyperparameters['init'])) self.dis_a.apply(weights_init('gaussian')) self.dis_b.apply(weights_init('gaussian')) self.criterion_seg = DiceLoss(ignore_index=hyperparameters['seg']['ignore_index'])
def __init__(self, hyperparameters): super(MUNIT_Trainer, self).__init__() lr = hyperparameters['lr'] # Initiate the networks self.gen_b = AdaINGen( hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b self.dis_b = MsImageDis( hyperparameters['input_dim_b'], hyperparameters['new_size'], hyperparameters['dis']) # discriminator for domain b self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim'] self.reg_param = hyperparameters['reg_param'] self.beta_step = hyperparameters['beta_step'] self.target_kl = hyperparameters['target_kl'] self.gan_type = hyperparameters['gan_type'] # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list(self.dis_b.parameters()) gen_params = list(self.gen_b.parameters()) self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) # Network weight initialization self.gen_b.apply(weights_init(hyperparameters['init'])) self.dis_b.apply(weights_init('gaussian')) # SSIM Loss self.ssim_loss = pytorch_ssim.SSIM()
def __init__(self, hyperparameters): super(AGUIT_Trainer, self).__init__() lr = hyperparameters['lr'] # Initiate the networks self.noise_dim = hyperparameters['gen']['noise_dim'] self.attr_dim = len(hyperparameters['gen']['selected_attrs']) self.gen = AdaINGen(hyperparameters['input_dim'], hyperparameters['gen']) self.dis = MsImageDis(hyperparameters['input_dim'], self.attr_dim, hyperparameters['dis']) self.dis_content = ContentDis( hyperparameters['gen']['dim'] * (2**hyperparameters['gen']['n_downsample']), self.attr_dim) # fix the noise used in sampling display_size = int(hyperparameters['display_size']) # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list(self.dis.parameters()) + list( self.dis_content.parameters()) gen_params = list(self.gen.parameters()) self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) # Network weight initialization self.apply(weights_init(hyperparameters['init'])) self.dis.apply(weights_init('gaussian')) self.dis_content.apply(weights_init('gaussian'))
def __init__(self, param): super(SupIntrinsicTrainer, self).__init__() lr = param['lr'] # Initiate the networks self.model = AdaINGen(param['input_dim_a'], param['input_dim_b'] + param['input_dim_b'], param['gen']) # auto-encoder # Setup the optimizers beta1 = param['beta1'] beta2 = param['beta2'] gen_params = list(self.model.parameters()) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=param['weight_decay']) self.gen_scheduler = get_scheduler(self.gen_opt, param) # Network weight initialization self.apply(weights_init(param['init'])) self.best_result = float('inf')
def __init__(self, hyperparameters, gpu_ids=[0]): super(DGNet_Trainer, self).__init__() lr_g = hyperparameters['lr_g'] #生成器学习率 lr_d = hyperparameters['lr_d'] #判别器学习率 ID_class = hyperparameters['ID_class'] if not 'apex' in hyperparameters.keys(): hyperparameters['apex'] = False self.fp16 = hyperparameters['apex'] # Initiate the networks # We do not need to manually set fp16 in the network for the new apex. So here I set fp16=False. # 构建Es编码+解码过程 gen_a.encode()可以进行编码,gen_b.encode()可以进行解码 self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen'], fp16 = False) # auto-encoder for domain a self.gen_b = self.gen_a # auto-encoder for domain b # ID_stride,外观编码器池化层的stride if not 'ID_stride' in hyperparameters.keys(): hyperparameters['ID_stride'] = 2 # 构建外观编码器 if hyperparameters['ID_style']=='PCB': self.id_a = PCB(ID_class) elif hyperparameters['ID_style']=='AB': #使用的AB编码器 self.id_a = ft_netAB(ID_class, stride = hyperparameters['ID_stride'], norm=hyperparameters['norm_id'], pool=hyperparameters['pool']) else: self.id_a = ft_net(ID_class, norm=hyperparameters['norm_id'], pool=hyperparameters['pool']) # return 2048 now # 浅拷贝,两者等同 self.id_b = self.id_a # 鉴别器,使用的是一个多尺寸的鉴别器,即对图片进行几次缩放,并且对每次缩放都会预测,计算总的损失 self.dis_a = MsImageDis(3, hyperparameters['dis'], fp16 = False) # discriminator for domain a self.dis_b = self.dis_a # discriminator for domain b # load teachers 加载教师模型 if hyperparameters['teacher'] != "": teacher_name = hyperparameters['teacher'] print(teacher_name) # 构建教师模型 teacher_names = teacher_name.split(',') teacher_model = nn.ModuleList() teacher_count = 0 for teacher_name in teacher_names: config_tmp = load_config(teacher_name) if 'stride' in config_tmp: stride = config_tmp['stride'] else: stride = 2 # 网络搭建 model_tmp = ft_net(ID_class, stride = stride) teacher_model_tmp = load_network(model_tmp, teacher_name) teacher_model_tmp.model.fc = nn.Sequential() # remove the original fc layer in ImageNet teacher_model_tmp = teacher_model_tmp.cuda() if self.fp16: teacher_model_tmp = amp.initialize(teacher_model_tmp, opt_level="O1") teacher_model.append(teacher_model_tmp.cuda().eval()) teacher_count +=1 self.teacher_model = teacher_model # 选择是否使用bn if hyperparameters['train_bn']: self.teacher_model = self.teacher_model.apply(train_bn) # 实例正则化 self.instancenorm = nn.InstanceNorm2d(512, affine=False) # RGB to one channel if hyperparameters['single']=='edge': self.single = to_edge else: self.single = to_gray(False) # Random Erasing when training if not 'erasing_p' in hyperparameters.keys(): self.erasing_p = 0 else: self.erasing_p = hyperparameters['erasing_p'] # erasing_p表示随机擦除的概率 # 随机擦除矩形区域的一些像素,数据增强 self.single_re = RandomErasing(probability = self.erasing_p, mean=[0.0, 0.0, 0.0]) if not 'T_w' in hyperparameters.keys(): hyperparameters['T_w'] = 1 # Setup the optimizers 设置优化器的参数 beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list(self.dis_a.parameters()) #+ list(self.dis_b.parameters()) gen_params = list(self.gen_a.parameters()) #+ list(self.gen_b.parameters()) # 使用Adam优化器 self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad], lr=lr_d, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad], lr=lr_g, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) # id params if hyperparameters['ID_style']=='PCB': ignored_params = (list(map(id, self.id_a.classifier0.parameters() )) +list(map(id, self.id_a.classifier1.parameters() )) +list(map(id, self.id_a.classifier2.parameters() )) +list(map(id, self.id_a.classifier3.parameters() )) ) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD([ {'params': base_params, 'lr': lr2}, {'params': self.id_a.classifier0.parameters(), 'lr': lr2*10}, {'params': self.id_a.classifier1.parameters(), 'lr': lr2*10}, {'params': self.id_a.classifier2.parameters(), 'lr': lr2*10}, {'params': self.id_a.classifier3.parameters(), 'lr': lr2*10} ], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) elif hyperparameters['ID_style']=='AB': ignored_params = (list(map(id, self.id_a.classifier1.parameters())) + list(map(id, self.id_a.classifier2.parameters()))) # 获得基本的配置参数,如学习率 base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD([ {'params': base_params, 'lr': lr2}, {'params': self.id_a.classifier1.parameters(), 'lr': lr2*10}, {'params': self.id_a.classifier2.parameters(), 'lr': lr2*10} ], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) else: ignored_params = list(map(id, self.id_a.classifier.parameters() )) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD([ {'params': base_params, 'lr': lr2}, {'params': self.id_a.classifier.parameters(), 'lr': lr2*10} ], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) # 选择各个网络优化的策略 self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) self.id_scheduler = get_scheduler(self.id_opt, hyperparameters) self.id_scheduler.gamma = hyperparameters['gamma2'] #ID Loss self.id_criterion = nn.CrossEntropyLoss() self.criterion_teacher = nn.KLDivLoss(size_average=False) # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False # save memory if self.fp16: # Name the FP16_Optimizer instance to replace the existing optimizer assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled." self.gen_a = self.gen_a.cuda() self.dis_a = self.dis_a.cuda() self.id_a = self.id_a.cuda() self.gen_b = self.gen_a self.dis_b = self.dis_a self.id_b = self.id_a self.gen_a, self.gen_opt = amp.initialize(self.gen_a, self.gen_opt, opt_level="O1") self.dis_a, self.dis_opt = amp.initialize(self.dis_a, self.dis_opt, opt_level="O1") self.id_a, self.id_opt = amp.initialize(self.id_a, self.id_opt, opt_level="O1")
def __init__(self, hyperparameters): super(MUNIT_Trainer, self).__init__() lr = hyperparameters["lr"] self.gen_state = hyperparameters["gen_state"] self.guided = hyperparameters["guided"] self.newsize = hyperparameters["crop_image_height"] self.semantic_w = hyperparameters["semantic_w"] > 0 self.recon_mask = hyperparameters["recon_mask"] == 1 self.check_alignment = hyperparameters["check_alignment"] == 1 self.full_adaptation = hyperparameters["full_adaptation"] == 1 self.dann_scheduler = None self.full_adaptation = hyperparameters["full_adaptation"] == 1 if "domain_adv_w" in hyperparameters.keys(): self.domain_classif = hyperparameters["domain_adv_w"] > 0 else: self.domain_classif = False if self.gen_state == 0: # Initiate the networks self.gen_a = AdaINGen( hyperparameters["input_dim_a"], hyperparameters["gen"]) # auto-encoder for domain a self.gen_b = AdaINGen( hyperparameters["input_dim_b"], hyperparameters["gen"]) # auto-encoder for domain b elif self.gen_state == 1: self.gen = AdaINGen_double(hyperparameters["input_dim_a"], hyperparameters["gen"]) else: print("self.gen_state unknown value:", self.gen_state) self.dis_a = MsImageDis( hyperparameters["input_dim_a"], hyperparameters["dis"]) # discriminator for domain a self.dis_b = MsImageDis( hyperparameters["input_dim_b"], hyperparameters["dis"]) # discriminator for domain b self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters["gen"]["style_dim"] # fix the noise used in sampling display_size = int(hyperparameters["display_size"]) print(self.style_dim) print(display_size) self.s_a = torch.randn(display_size, self.style_dim, 1, 1).cuda() self.s_b = torch.randn(display_size, self.style_dim, 1, 1).cuda() # Setup the optimizers beta1 = hyperparameters["beta1"] beta2 = hyperparameters["beta2"] dis_params = list(self.dis_a.parameters()) + list( self.dis_b.parameters()) if self.gen_state == 0: gen_params = list(self.gen_a.parameters()) + list( self.gen_b.parameters()) elif self.gen_state == 1: gen_params = list(self.gen.parameters()) else: print("self.gen_state unknown value:", self.gen_state) self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters["weight_decay"], ) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters["weight_decay"], ) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) # Network weight initialization self.apply(weights_init(hyperparameters["init"])) self.dis_a.apply(weights_init("gaussian")) self.dis_b.apply(weights_init("gaussian")) # Load VGG model if needed if "vgg_w" in hyperparameters.keys() and hyperparameters["vgg_w"] > 0: self.vgg = load_vgg16(hyperparameters["vgg_model_path"] + "/models") self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False # Load semantic segmentation model if needed if "semantic_w" in hyperparameters.keys( ) and hyperparameters["semantic_w"] > 0: self.segmentation_model = load_segmentation_model( hyperparameters["semantic_ckpt_path"]) self.segmentation_model.eval() for param in self.segmentation_model.parameters(): param.requires_grad = False # Load domain classifier if needed if ("domain_adv_w" in hyperparameters.keys() and hyperparameters["domain_adv_w"] > 0): self.domain_classifier = domainClassifier(256) dann_params = list(self.domain_classifier.parameters()) self.dann_opt = torch.optim.Adam( [p for p in dann_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters["weight_decay"], ) self.domain_classifier.apply(weights_init("gaussian")) self.dann_scheduler = get_scheduler(self.dann_opt, hyperparameters)
def __init__(self, hyperparameters, resume_epoch=-1, snapshot_dir=None): super(MUNIT_Trainer, self).__init__() lr = hyperparameters['lr'] # Initiate the networks. self.gen = AdaINGen( hyperparameters['input_dim'] + hyperparameters['n_datasets'], hyperparameters['gen'], hyperparameters['n_datasets']) # Auto-encoder for domain a. self.dis = MsImageDis( hyperparameters['input_dim'] + hyperparameters['n_datasets'], hyperparameters['dis']) # Discriminator for domain a. self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim'] self.beta1 = hyperparameters['beta1'] self.beta2 = hyperparameters['beta2'] self.weight_decay = hyperparameters['weight_decay'] # Initiating and loader pretrained UNet. self.sup = UNet(input_channels=hyperparameters['input_dim'], num_classes=2).cuda() # Fix the noise used in sampling. self.s_a = torch.randn(8, self.style_dim, 1, 1).cuda() self.s_b = torch.randn(8, self.style_dim, 1, 1).cuda() # Setup the optimizers. beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list(self.dis.parameters()) gen_params = list(self.gen.parameters()) + list(self.sup.parameters()) self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr, betas=(self.beta1, self.beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr, betas=(self.beta1, self.beta2), weight_decay=hyperparameters['weight_decay']) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) # Network weight initialization. self.apply(weights_init(hyperparameters['init'])) self.dis.apply(weights_init('gaussian')) # Presetting one hot encoding vectors. self.one_hot_img = torch.zeros(hyperparameters['n_datasets'], hyperparameters['batch_size'], hyperparameters['n_datasets'], 256, 256).cuda() self.one_hot_c = torch.zeros(hyperparameters['n_datasets'], hyperparameters['batch_size'], hyperparameters['n_datasets'], 64, 64).cuda() for i in range(hyperparameters['n_datasets']): self.one_hot_img[i, :, i, :, :].fill_(1) self.one_hot_c[i, :, i, :, :].fill_(1) if resume_epoch != -1: self.resume(snapshot_dir, hyperparameters)
def __init__(self, hyperparameters): super(MUNIT_Trainer, self).__init__() lr = hyperparameters['lr'] # Initiate the networks self.gen_a = AdaINGen( hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain a self.gen_b = AdaINGen( hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b self.dis_a = MsImageDis( hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain a self.dis_b = MsImageDis( hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator for domain b self.content_classifier = ContentClassifier( hyperparameters['gen']['dim'], hyperparameters) self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim'] self.num_con_c = hyperparameters['dis']['num_con_c'] # fix the noise used in sampling display_size = int(hyperparameters['display_size']) self.s_a = torch.randn(display_size, self.style_dim, 1, 1).cuda() self.s_b = torch.randn(display_size, self.style_dim, 1, 1).cuda() # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] # dis_params = list(self.dis_a.parameters()) + list(self.dis_b.parameters()) gen_params = list(self.gen_a.parameters()) + list( self.gen_b.parameters()) dis_named_params = list(self.dis_a.named_parameters()) + list( self.dis_b.named_parameters()) # gen_named_params = list(self.gen_a.named_parameters()) + list(self.gen_b.named_parameters()) ### modifying list params dis_params = list() # gen_params = list() for name, param in dis_named_params: if "_Q" in name: # print('%s --> gen_params' % name) gen_params.append(param) else: dis_params.append(param) content_classifier_params = list(self.content_classifier.parameters()) self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.cla_opt = torch.optim.Adam( [p for p in content_classifier_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) self.cla_scheduler = get_scheduler(self.cla_opt, hyperparameters) # Network weight initialization self.apply(weights_init(hyperparameters['init'])) self.dis_a.apply(weights_init('gaussian')) self.dis_b.apply(weights_init('gaussian')) self.content_classifier.apply(weights_init('gaussian')) # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False self.gan_type = hyperparameters['dis']['gan_type'] self.criterionQ_con = NormalNLLLoss() self.criterion_content_classifier = nn.CrossEntropyLoss() # self.batch_size = hyperparameters['batch_size'] self.batch_size_val = hyperparameters['batch_size_val']
def __init__(self, hyperparameters, gpu_ids=[0]): super(DGNet_Trainer, self).__init__() # 从配置文件获取生成模型的和鉴别模型的学习率 lr_g = hyperparameters['lr_g'] lr_d = hyperparameters['lr_d'] # # ID的类别,这里要注意,不同的数据集都是不一样的,应该是训练数据集的ID数目,非测试集 ID_class = hyperparameters['ID_class'] # 看是否设置使用float16,估计float16可以增加精确度 if not 'apex' in hyperparameters.keys(): hyperparameters['apex'] = False self.fp16 = hyperparameters['apex'] # Initiate the networks # We do not need to manually set fp16 in the network for the new apex. So here I set fp16=False. ################################################################################################################ ##这里是定义Es和G # 注意这里包含了两个步骤,Es编码+解码过程,既然解码(论文Figure 2的黄色梯形G)包含到这里了,下面Ea应该不会包含解码过程了 # 因为这里是一个类,如后续gen_a.encode()可以进行编码,gen_b.encode()可以进行解码 self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen'], fp16=False) # auto-encoder for domain a self.gen_b = self.gen_a # auto-encoder for domain b ############################################################################################################################################ ############################################################################################################################################ ##这里是定义Ea # ID_stride,外观编码器池化层的stride if not 'ID_stride' in hyperparameters.keys(): hyperparameters['ID_stride'] = 2 # hyperparameters['ID_style']默认为'AB',论文中的Ea编码器 #这里是设置Ea,有三种模型可以选择 #PCB模型,ft_netAB为改造后的resnet50,ft_net为resnet50 if hyperparameters['ID_style'] == 'PCB': self.id_a = PCB(ID_class) elif hyperparameters['ID_style'] == 'AB': # 这是我们执行的模型,注意的是,id_a返回两个x(表示身份),获得f,具体介绍看函数内部 # 我们使用的是ft_netAB,是代码中Ea编码的过程,也就得到 ap code的过程,除了ap code还会得到两个分类结果 # 现在怀疑,该分类结果,可能就是行人重识别的结果 #ID_class表示有ID_class个不同ID的行人 self.id_a = ft_netAB(ID_class, stride=hyperparameters['ID_stride'], norm=hyperparameters['norm_id'], pool=hyperparameters['pool']) else: self.id_a = ft_net(ID_class, norm=hyperparameters['norm_id'], pool=hyperparameters['pool']) # return 2048 now # 这里进行的是浅拷贝,所以我认为他们的权重是一起的,可以理解为一个 self.id_b = self.id_a ############################################################################################################################################################ ############################################################################################################################################################ ##这里是定义D # 鉴别器,行人重识别,这里使用的是一个多尺寸的鉴别器,大概就是说,对图片进行几次缩放,并且对每次缩放都会预测,计算总的损失 # 经过网络3个元素,分别大小为[batch_size,1,64,32], [batch_size,1,32,16], [batch_size,1,16,8] self.dis_a = MsImageDis(3, hyperparameters['dis'], fp16=False) # discriminator for domain a self.dis_b = self.dis_a # discriminator for domain b ############################################################################################################################################################ ############################################################################################################################################################ # load teachers # 加载老师模型 # teacher:老师模型名称。对于DukeMTMC,您可以设置“best - duke” if hyperparameters['teacher'] != "": #teacher_name=best teacher_name = hyperparameters['teacher'] print(teacher_name) #有这个操作,我怀疑是可以加载多个教师模型 teacher_names = teacher_name.split(',') #构建老师模型 teacher_model = nn.ModuleList() teacher_count = 0 # 默认只有一个teacher_name='teacher_name',所以其加载的模型配置文件为项目根目录models/best/opts.yaml模型 for teacher_name in teacher_names: # 加载配置文件models/best/opts.yaml config_tmp = load_config(teacher_name) if 'stride' in config_tmp: #stride=1 stride = config_tmp['stride'] else: stride = 2 # 老师模型加载,老师模型为ft_net为resnet50 model_tmp = ft_net(ID_class, stride=stride) teacher_model_tmp = load_network(model_tmp, teacher_name) # 移除原本的全连接层 teacher_model_tmp.model.fc = nn.Sequential( ) # remove the original fc layer in ImageNet teacher_model_tmp = teacher_model_tmp.cuda() # summary(teacher_model_tmp, (3, 224, 224)) #使用浮点型 if self.fp16: teacher_model_tmp = amp.initialize(teacher_model_tmp, opt_level="O1") teacher_model.append(teacher_model_tmp.cuda().eval()) teacher_count += 1 self.teacher_model = teacher_model # 选择是否使用bn if hyperparameters['train_bn']: self.teacher_model = self.teacher_model.apply(train_bn) ############################################################################################################################################################ # 实例正则化 self.instancenorm = nn.InstanceNorm2d(512, affine=False) # RGB to one channel # 默认设置signal=gray,Es的输入为灰度图 if hyperparameters['single'] == 'edge': self.single = to_edge else: self.single = to_gray(False) # Random Erasing when training #earsing_p表示随机擦除的概率 if not 'erasing_p' in hyperparameters.keys(): self.erasing_p = 0 else: self.erasing_p = hyperparameters['erasing_p'] #随机擦除矩形区域的一些像素,应该类似于数据增强 self.single_re = RandomErasing(probability=self.erasing_p, mean=[0.0, 0.0, 0.0]) # 设置T_w为1,T_w为primary feature learning loss的权重系数 if not 'T_w' in hyperparameters.keys(): hyperparameters['T_w'] = 1 ################################################################################################ # Setup the optimizers # 设置优化器参数 beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list( self.dis_a.parameters()) #+ list(self.dis_b.parameters()) gen_params = list( self.gen_a.parameters()) #+ list(self.gen_b.parameters()) #使用Adams优化器,用Adams训练Es,G,D self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr_d, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr_g, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) # id params # 因为ID_style默认为AB,所以这里不执行 if hyperparameters['ID_style'] == 'PCB': ignored_params = ( list(map(id, self.id_a.classifier0.parameters())) + list(map(id, self.id_a.classifier1.parameters())) + list(map(id, self.id_a.classifier2.parameters())) + list(map(id, self.id_a.classifier3.parameters()))) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] #Ea 的优化器 self.id_opt = torch.optim.SGD( [{ 'params': base_params, 'lr': lr2 }, { 'params': self.id_a.classifier0.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier1.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier2.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier3.parameters(), 'lr': lr2 * 10 }], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) # 这里是我们执行的代码 elif hyperparameters['ID_style'] == 'AB': # 忽略的参数,应该是适用于'PCB'或者其他的,但是不适用于'AB'的 ignored_params = ( list(map(id, self.id_a.classifier1.parameters())) + list(map(id, self.id_a.classifier2.parameters()))) # 获得基本的配置参数,如学习率 base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] #对Ea使用SGD self.id_opt = torch.optim.SGD( [{ 'params': base_params, 'lr': lr2 }, { 'params': self.id_a.classifier1.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier2.parameters(), 'lr': lr2 * 10 }], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) else: ignored_params = list(map(id, self.id_a.classifier.parameters())) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD( [{ 'params': base_params, 'lr': lr2 }, { 'params': self.id_a.classifier.parameters(), 'lr': lr2 * 10 }], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) # 选择各个网络的优化 self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) self.id_scheduler = get_scheduler(self.id_opt, hyperparameters) self.id_scheduler.gamma = hyperparameters['gamma2'] #ID Loss #交叉熵损失函数 self.id_criterion = nn.CrossEntropyLoss() # KL散度 self.criterion_teacher = nn.KLDivLoss(size_average=False) # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False # save memory if self.fp16: # Name the FP16_Optimizer instance to replace the existing optimizer assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled." self.gen_a = self.gen_a.cuda() self.dis_a = self.dis_a.cuda() self.id_a = self.id_a.cuda() self.gen_b = self.gen_a self.dis_b = self.dis_a self.id_b = self.id_a self.gen_a, self.gen_opt = amp.initialize(self.gen_a, self.gen_opt, opt_level="O1") self.dis_a, self.dis_opt = amp.initialize(self.dis_a, self.dis_opt, opt_level="O1") self.id_a, self.id_opt = amp.initialize(self.id_a, self.id_opt, opt_level="O1")
def __init__(self, hyperparameters): super(MUNIT_Trainer, self).__init__() lr = hyperparameters['lr'] # Initiate the networks self.gen_a = AdaINGen( hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain a self.gen_b = AdaINGen( hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b self.dis_a = MsImageDis( hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain a self.dis_b = MsImageDis( hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator for domain b self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim'] ''' input_dim_a和input_dim_b是输入图像的维度,RGB图就是3 gen和dis是在yaml中定义的与架构相关的配置 ''' # fix the noise used in sampling display_size = int(hyperparameters['display_size']) self.s_a = torch.randn(display_size, self.style_dim, 1, 1).cuda() self.s_b = torch.randn(display_size, self.style_dim, 1, 1).cuda() ''' 为每幅显示的图像(总共16幅)配置随机的风格(维度为8) ''' # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list(self.dis_a.parameters()) + list( self.dis_b.parameters()) gen_params = list(self.gen_a.parameters()) + list( self.gen_b.parameters()) self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) ''' 这种简洁的写法值得学习:先将parameter()的list并起来,然后[p for p in params if p.requires_grad] 这里分别为判别器参数、生成器参数各自建立一个优化器 优化器采用Adam,算法参数为0.5和0.999 优化器中可同时配置权重衰减,这里是1e-4 学习率调节器默认配置为每100000步减小为0.5 ''' # Network weight initialization self.apply(weights_init(hyperparameters['init'])) self.dis_a.apply(weights_init('gaussian')) self.dis_b.apply(weights_init('gaussian')) ''' 注:这个apply函数递归地对每个子模块应用某种函数 ''' # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False '''默认配置中,没有使用这个vgg网络'''
def __init__(self, hyperparameters): super(MUNIT_Trainer, self).__init__() lr = hyperparameters['lr'] # Initiate the networks self.gen_a = AdaINGen( hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain a self.gen_b = AdaINGen( hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b self.dis_a = MsImageDis( hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain a self.dis_b = MsImageDis( hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator for domain b self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim'] self.a_attibute = hyperparameters['label_a'] self.b_attibute = hyperparameters['label_b'] # fix the noise used in sampling display_size = int(hyperparameters['display_size']) if self.a_attibute == 0: self.s_a = torch.randn(display_size, self.style_dim, 1, 1).cuda() else: self.s_a = torch.randn(display_size, self.style_dim - self.a_attibute, 1, 1).cuda() s_attribute = [i % self.a_attibute for i in range(display_size)] s_attribute = torch.tensor(s_attribute, dtype=torch.long).reshape( (display_size, 1)) label_a = torch.zeros(display_size, self.a_attibute, dtype=torch.float32).scatter_( 1, s_attribute, 1) label_a = label_a.reshape(display_size, self.a_attibute, 1, 1).cuda() self.s_a = torch.cat([self.s_a, label_a], 1) if self.b_attibute == 0: self.s_b = torch.randn(display_size, self.style_dim, 1, 1).cuda() else: self.s_b = torch.randn(display_size, self.style_dim - self.b_attibute, 1, 1).cuda() s_attribute = [i % self.b_attibute for i in range(display_size)] s_attribute = torch.tensor(s_attribute, dtype=torch.long).reshape( (display_size, 1)) label_b = torch.zeros(display_size, self.b_attibute, dtype=torch.float32).scatter_( 1, s_attribute, 1) label_b = label_b.reshape(display_size, self.b_attibute, 1, 1).cuda() self.s_b = torch.cat([self.s_b, label_b], 1) # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list(self.dis_a.parameters()) + list( self.dis_b.parameters()) gen_params = list(self.gen_a.parameters()) + list( self.gen_b.parameters()) self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) # Network weight initialization self.apply(weights_init(hyperparameters['init'])) self.dis_a.apply(weights_init('gaussian')) self.dis_b.apply(weights_init('gaussian')) # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False
def __init__(self, hyperparameters, gpu_ids=[0]): super(DGNet_Trainer, self).__init__() # 从配置文件获取生成模型和鉴别模型的学习率 lr_g = hyperparameters['lr_g'] lr_d = hyperparameters['lr_d'] # ID 类别 ID_class = hyperparameters['ID_class'] # 是否设置使用fp16, if not 'apex' in hyperparameters.keys(): hyperparameters['apex'] = False self.fp16 = hyperparameters['apex'] # Initiate the networks # We do not need to manually set fp16 in the network for the new apex. So here I set fp16=False. self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen'], fp16=False) # auto-encoder for domain a self.gen_b = self.gen_a # auto-encoder for domain b ''' ft_netAB : Ea ''' # ID_stride: 外观编码器池化层的stride if not 'ID_stride' in hyperparameters.keys(): hyperparameters['ID_stride'] = 2 # id_a : 外观编码器 -> Ea if hyperparameters['ID_style'] == 'PCB': self.id_a = PCB(ID_class) elif hyperparameters['ID_style'] == 'AB': self.id_a = ft_netAB(ID_class, stride=hyperparameters['ID_stride'], norm=hyperparameters['norm_id'], pool=hyperparameters['pool']) else: self.id_a = ft_net(ID_class, norm=hyperparameters['norm_id'], pool=hyperparameters['pool']) # return 2048 now self.id_b = self.id_a # 对图片b的操作与图片a的操作一致 # 判别器,使用的是一个多尺寸的判别器,就是对图片进行几次缩放,并且对每次缩放都会预测,计算总的损失 # 经过网络3个缩放,,分别为:[batch_size, 1, 64, 32],[batch_size, 1, 32, 16],[batch_size, 1, 16, 8] self.dis_a = MsImageDis(3, hyperparameters['dis'], fp16=False) # discriminator for domain a self.dis_b = self.dis_a # discriminator for domain b # load teachers if hyperparameters['teacher'] != "": teacher_name = hyperparameters['teacher'] print(teacher_name) # 加载多个老师模型 teacher_names = teacher_name.split(',') # 构建老师模型 teacher_model = nn.ModuleList() # 初始化为空,接下来开始填充 teacher_count = 0 for teacher_name in teacher_names: config_tmp = load_config(teacher_name) # 池化层的stride if 'stride' in config_tmp: stride = config_tmp['stride'] else: stride = 2 # 开始搭建网络 model_tmp = ft_net(ID_class, stride=stride) teacher_model_tmp = load_network(model_tmp, teacher_name) teacher_model_tmp.model.fc = nn.Sequential( ) # remove the original fc layer in ImageNet teacher_model_tmp = teacher_model_tmp.cuda() # teacher_model_tmp,[3, 224, 224] # 使用fp16 if self.fp16: teacher_model_tmp = amp.initialize(teacher_model_tmp, opt_level="O1") teacher_model.append(teacher_model_tmp.cuda().eval( )) # 第一个填充为 teacher_model_tmp.cuda().eval() teacher_count += 1 self.teacher_model = teacher_model # 是否使用batchnorm if hyperparameters['train_bn']: self.teacher_model = self.teacher_model.apply(train_bn) # 实例正则化 self.instancenorm = nn.InstanceNorm2d(512, affine=False) # RGB to one channel # 因为Es 需要使用灰度图, 所以single 用来将图片转化为灰度图 if hyperparameters['single'] == 'edge': self.single = to_edge else: self.single = to_gray(False) # Random Erasing when training # arasing_p 随机擦除的概率 if not 'erasing_p' in hyperparameters.keys(): self.erasing_p = 0 else: self.erasing_p = hyperparameters['erasing_p'] # 对图片中的某一随机区域进行擦除,具体:将该区域的像素值设置为均值 self.single_re = RandomErasing(probability=self.erasing_p, mean=[0.0, 0.0, 0.0]) if not 'T_w' in hyperparameters.keys(): hyperparameters['T_w'] = 1 # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list( self.dis_a.parameters()) #+ list(self.dis_b.parameters()) gen_params = list( self.gen_a.parameters()) #+ list(self.gen_b.parameters()) self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr_d, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr_g, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) # id params # 修改 id_a模型中分类器的学习率 if hyperparameters['ID_style'] == 'PCB': ignored_params = ( list(map(id, self.id_a.classifier0.parameters())) + list(map(id, self.id_a.classifier1.parameters())) + list(map(id, self.id_a.classifier2.parameters())) + list(map(id, self.id_a.classifier3.parameters()))) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD( [{ 'params': base_params, 'lr': lr2 }, { 'params': self.id_a.classifier0.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier1.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier2.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier3.parameters(), 'lr': lr2 * 10 }], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) elif hyperparameters['ID_style'] == 'AB': ignored_params = ( list(map(id, self.id_a.classifier1.parameters())) + list(map(id, self.id_a.classifier2.parameters()))) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD( [{ 'params': base_params, 'lr': lr2 }, { 'params': self.id_a.classifier1.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier2.parameters(), 'lr': lr2 * 10 }], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) else: ignored_params = list(map(id, self.id_a.classifier.parameters())) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD( [{ 'params': base_params, 'lr': lr2 }, { 'params': self.id_a.classifier.parameters(), 'lr': lr2 * 10 }], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) # 生成器和判别器中的优化策略(学习率的更新策略) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) self.id_scheduler = get_scheduler(self.id_opt, hyperparameters) self.id_scheduler.gamma = hyperparameters['gamma2'] #ID Loss self.id_criterion = nn.CrossEntropyLoss() self.criterion_teacher = nn.KLDivLoss( size_average=False) # 生成主要特征: Lprim # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False # save memory # 保存当前的模型,是为了提高计算效率 if self.fp16: # Name the FP16_Optimizer instance to replace the existing optimizer assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled." self.gen_a = self.gen_a.cuda() self.dis_a = self.dis_a.cuda() self.id_a = self.id_a.cuda() self.gen_b = self.gen_a self.dis_b = self.dis_a self.id_b = self.id_a self.gen_a, self.gen_opt = amp.initialize(self.gen_a, self.gen_opt, opt_level="O1") self.dis_a, self.dis_opt = amp.initialize(self.dis_a, self.dis_opt, opt_level="O1") self.id_a, self.id_opt = amp.initialize(self.id_a, self.id_opt, opt_level="O1")
def __init__(self, param): super(UnsupIntrinsicTrainer, self).__init__() lr = param['lr'] # Initiate the networks self.gen_i = AdaINGen(param['input_dim_a'], param['input_dim_a'], param['gen']) # auto-encoder for domain I self.gen_r = AdaINGen(param['input_dim_b'], param['input_dim_b'], param['gen']) # auto-encoder for domain R self.gen_s = AdaINGen(param['input_dim_c'], param['input_dim_c'], param['gen']) # auto-encoder for domain S self.dis_r = MsImageDis(param['input_dim_b'], param['dis']) # discriminator for domain R self.dis_s = MsImageDis(param['input_dim_c'], param['dis']) # discriminator for domain S gp = param['gen'] self.with_mapping = True self.use_phy_loss = True self.use_content_loss = True if 'ablation_study' in param: if 'with_mapping' in param['ablation_study']: wm = param['ablation_study']['with_mapping'] self.with_mapping = True if wm != 0 else False if 'wo_phy_loss' in param['ablation_study']: wpl = param['ablation_study']['wo_phy_loss'] self.use_phy_loss = True if wpl == 0 else False if 'wo_content_loss' in param['ablation_study']: wcl = param['ablation_study']['wo_content_loss'] self.use_content_loss = True if wcl == 0 else False if self.with_mapping: self.fea_s = IntrinsicSplitor(gp['style_dim'], gp['mlp_dim'], gp['n_layer'], gp['activ']) # split style for I self.fea_m = IntrinsicMerger(gp['style_dim'], gp['mlp_dim'], gp['n_layer'], gp['activ']) # merge style for R, S self.bias_shift = param['bias_shift'] self.instance_norm = nn.InstanceNorm2d(512, affine=False) self.style_dim = param['gen']['style_dim'] # fix the noise used in sampling display_size = int(param['display_size']) self.s_r = torch.randn(display_size, self.style_dim, 1, 1).cuda() + 1. self.s_s = torch.randn(display_size, self.style_dim, 1, 1).cuda() - 1. # Setup the optimizers beta1 = param['beta1'] beta2 = param['beta2'] dis_params = list(self.dis_r.parameters()) + list( self.dis_s.parameters()) if self.with_mapping: gen_params = list(self.gen_i.parameters()) + list(self.gen_r.parameters()) + \ list(self.gen_s.parameters()) + \ list(self.fea_s.parameters()) + list(self.fea_m.parameters()) else: gen_params = list(self.gen_i.parameters()) + list( self.gen_r.parameters()) + list(self.gen_s.parameters()) self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=param['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=param['weight_decay']) self.dis_scheduler = get_scheduler(self.dis_opt, param) self.gen_scheduler = get_scheduler(self.gen_opt, param) # Network weight initialization self.apply(weights_init(param['init'])) self.dis_r.apply(weights_init('gaussian')) self.dis_s.apply(weights_init('gaussian')) self.best_result = float('inf') self.reflectance_loss = LocalAlbedoSmoothnessLoss(param)
def __init__(self, hyperparameters): super(MUNIT_Trainer, self).__init__() lr = hyperparameters['lr'] # Initiate the networks self.gen_a = AdaINGen( hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain a self.gen_b = AdaINGen( hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b self.dis_a = MsImageDis( hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain a self.dis_b = MsImageDis( hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator for domain b self.dis_sa = MsImageDis( hyperparameters['input_dim_a'] * 2, hyperparameters['dis']) # discriminator for domain a self.dis_sb = MsImageDis( hyperparameters['input_dim_b'] * 2, hyperparameters['dis']) # discriminator for domain b self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim'] # fix the noise used in sampling display_size = int(hyperparameters['display_size']) self.s_a = torch.randn(display_size, self.style_dim, 1, 1).cuda() self.s_b = torch.randn(display_size, self.style_dim, 1, 1).cuda() # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list(self.dis_a.parameters()) + list( self.dis_b.parameters()) dis_style_params = list(self.dis_sa.parameters()) + list( self.dis_sb.parameters()) gen_params = list(self.gen_a.parameters()) + list( self.gen_b.parameters()) self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.dis_style_opt = torch.optim.Adam( [p for p in dis_style_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.dis_style_scheduler = get_scheduler(self.dis_style_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) # Network weight initialization self.apply(weights_init(hyperparameters['init'])) self.dis_a.apply(weights_init('gaussian')) self.dis_sa.apply(weights_init('gaussian')) self.dis_b.apply(weights_init('gaussian')) self.dis_sb.apply(weights_init('gaussian')) if hyperparameters['gen']['CE_method'] == 'vgg': self.gen_a.content_init() self.gen_b.content_init() self.criterion = nn.L1Loss().cuda() self.triplet_loss = nn.TripletMarginLoss(margin=1.0, p=2).cuda() self.kld = nn.KLDivLoss() self.contextual_loss = ContextualLoss() # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False
def __init__(self, hyperparameters): super(ERGAN_Trainer, self).__init__() lr_G = hyperparameters['lr_G'] lr_D = hyperparameters['lr_D'] print(lr_D, lr_G) self.fp16 = hyperparameters['fp16'] # Initiate the networks self.gen_a = AdaINGen( hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain a self.gen_b = AdaINGen( hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b self.gen_b.enc_content = self.gen_a.enc_content # content share weight #self.gen_b.enc_style = self.gen_a.enc_style self.dis_a = MsImageDis( hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain a self.dis_b = MsImageDis( hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator for domain b self.instancenorm = nn.InstanceNorm2d(512, affine=False) self.style_dim = hyperparameters['gen']['style_dim'] self.a = hyperparameters['gen']['new_size'] / 224 # fix the noise used in sampling display_size = int(hyperparameters['display_size']) self.s_a = torch.randn(display_size, self.style_dim, 1, 1).cuda() self.s_b = torch.randn(display_size, self.style_dim, 1, 1).cuda() # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list(self.dis_a.parameters()) + list( self.dis_b.parameters()) gen_params = list(self.gen_a.parameters()) + list( self.gen_b.parameters()) self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr_D, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr_G, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) # Network weight initialization self.apply(weights_init(hyperparameters['init'])) self.dis_a.apply(weights_init('gaussian')) self.dis_b.apply(weights_init('gaussian')) if self.fp16: self.gen_a = self.gen_a.cuda() self.dis_a = self.dis_a.cuda() self.gen_b = self.gen_b.cuda() self.dis_b = self.dis_b.cuda() self.gen_a, self.gen_opt = amp.initialize(self.gen_a, self.gen_opt, opt_level="O1") self.dis_a, self.dis_opt = amp.initialize(self.dis_a, self.dis_opt, opt_level="O1") # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False