def binary_output(dataloader):
    embedding_net = EmbeddingResnet()
    net = TripletNet(embedding_net)
    #net = SiameseNet(embedding_net)
    #net = ClassificationNet(embedding_net, 100)
    net.load_state_dict(torch.load('./model/%s' % args.pretrained))

    use_cuda = torch.cuda.is_available()
    if use_cuda:
        net.cuda()
    full_batch_output = torch.cuda.FloatTensor()
    full_batch_label = torch.cuda.LongTensor()
    net.eval()
    for batch_idx, (inputs, targets) in enumerate(dataloader):
        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda()
        inputs, targets = Variable(inputs, volatile=True), Variable(targets)
        outputs = net.get_embedding(inputs).data
        full_batch_output = torch.cat((full_batch_output, outputs.data), 0)
        full_batch_label = torch.cat((full_batch_label, targets.data), 0)
    return torch.round(full_batch_output), full_batch_label
Пример #2
0
def main():
    import torch
    from torch.optim import lr_scheduler
    import torch.optim as optim
    from torch.autograd import Variable
    from trainer import fit
    import numpy as np
    cuda = torch.cuda.is_available()
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=100, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=100, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=100, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', action='store_true', default=True,
                        help='For Saving the current Model')
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    device = torch.device("cuda" if use_cuda else "cpu")
    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
    from datetime import datetime
    import os

    loging = False
    ismultitask = False
    loso = False

    if (args.save_model):
        model_save_path = 'model/triplet/'
        if not os.path.isdir(model_save_path):
            os.makedirs(model_save_path)
    if loging:
        fname = model_save_path + datetime.today().strftime("%m_%d_%H_%M") + ".txt"
        f = open(fname, 'w')

    x_data, y_data = load_smt()
    y_subj = np.zeros([108, 200])
    for i in range(108):
        y_subj[i, :] = i * 2
    y_subj = y_data.reshape(108, 200) + y_subj
    y_subj = y_subj.reshape(21600)


    # nonbciilli = np.s_[0,1,2,4,5,8,16,17,18,20,21,27,28,29,30,32,35,36,38,42,43,44,51]

    valtype = 'sess'
    if valtype == 'loso':
        pass
    elif valtype == 'sess':
        from networks import EmbeddingDeep4CNN, TripletNet, FineShallowCNN, EmbeddingDeepCNN, QuintupletNet, EmbeddingShallowCNN
        from losses import TripletLoss_dev2

        # make model for metric learning
        margin = 1
        embedding_net = EmbeddingShallowCNN()
       # clf_net = nn.Sequential(EmbeddingDeep4CNN(),nn.Linear(1000,2),nn.Dropout(p=1),nn.LogSoftmax(dim=1))
        print(embedding_net)
        model = TripletNet(embedding_net)

        if cuda:
            model.cuda()
        loss_fn = TripletLoss_dev2(margin).cuda()
        n_epochs =1
        log_interval = 10
        load_model_path = None#'C:\\Users\dk\PycharmProjects\giga_cnn\구모델\\clf_83_8.pt'#'clf_29.pt' #'triplet_mg26.pt'#'clf_triplet2_5.pt' #'triplet_31.pt'
        model.fc = nn.Sequential(nn.Linear(1000, 2), nn.Dropout(p=0.5))
        if load_model_path is not None:
            embedding_net.load_state_dict(torch.load(load_model_path))

        # For classification
        dataset_train = GigaDataset(x=x_data, y=y_data, valtype=valtype, istrain=True, sess=1)
        train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=args.batch_size, shuffle=True,
                                                   **kwargs)

        dataset_test = GigaDataset(x=x_data, y=y_data, valtype=valtype, istrain=False, sess=2, subj=-1)
        test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=args.batch_size, shuffle=False,
                                                  **kwargs)
        #make model for classification
        newmodel = nn.Sequential(model.embedding_net,
                                 nn.Linear(1000, 2),
                                 nn.Dropout(p=0.5),
                                 nn.LogSoftmax(dim=1)
                                 ).to(device)
        print(newmodel)
        newmodel.to(device)
        optimizer = optim.SGD(newmodel.parameters(), lr=0.001, momentum=0.9)
        # optimizer = optim.Adam(newmodel.parameters())
        for epoch in range(0):
            train(args, newmodel, device, train_loader, optimizer, epoch)
            j_loss, j_score = eval(args, newmodel, device, test_loader)


        # For embedding
        triplet_dataset_train = TripletGiga(x=x_data, y=y_data,valtype=valtype, istrain=True, sess=1)
        triplet_train_loader  = torch.utils.data.DataLoader(triplet_dataset_train, batch_size=args.batch_size, shuffle=True, **kwargs)

        triplet_dataset_test = TripletGiga(x=x_data, y=y_data,valtype=valtype, istrain=False, sess=2, subj=-1)
        triplet_test_loader  = torch.utils.data.DataLoader(triplet_dataset_test, batch_size=args.batch_size, shuffle=False, **kwargs)

        optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
        scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=1, last_epoch=-1)

        from sklearn.pipeline import Pipeline
        from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
        from sklearn.model_selection import ShuffleSplit, cross_val_score
        lda = LinearDiscriminantAnalysis()



        Testmodel = nn.Sequential(model.embedding_net,
                                  model.fc,
                                  nn.LogSoftmax(dim=1)).to(device)

        # tempEmbeddingNet = nn.Sequential(model.embedding_net,
        #                     nn.Linear(1000,1000),
        #                     nn.Sigmoid())
        # model = TripletNet(embedding_net)


        print(model)

        for temp in range(1, 30):  # 10epoch마다 세이브
            fit(triplet_train_loader, triplet_test_loader, model, loss_fn, optimizer, scheduler, n_epochs, cuda,
                log_interval)

            j_loss, j_score = eval(args, Testmodel, device, train_loader)
            j_loss, j_score = eval(args, Testmodel, device, test_loader)
            torch.save(model.state_dict(), 'clf_' + str(temp) + '.pt')


            torch.save(model.state_dict(), 'shallowDG_150epoch_82acc' + str(temp) + '.pt')




        #for visualization
        dataset_train_subj = GigaDataset(x=x_data, y=y_subj, valtype=valtype, istrain=True, sess=1)
        train_loader_subj = torch.utils.data.DataLoader(dataset_train_subj, batch_size=args.batch_size, shuffle=True,
                                                   **kwargs)

        dataset_test_subj = GigaDataset(x=x_data, y=y_subj, valtype=valtype, istrain=False, sess=2, subj=-1)
        test_loader_subj = torch.utils.data.DataLoader(dataset_test_subj, batch_size=args.batch_size, shuffle=False,
                                                  **kwargs)

        # train_embeddings_tl, train_labels_tl = extract_features(train_loader_subj.dataset, model.embedding_net.convnet,0,100)
        # val_embeddings_tl, val_labels_tl = extract_embeddings(test_loader_subj, model.embedding_net, 1000)

        train_embeddings_tl, train_labels_tl = extract_embeddings(train_loader_subj, model.embedding_net,1000)
        val_embeddings_tl, val_labels_tl = extract_embeddings(test_loader_subj, model.embedding_net,1000)
        #
        # train_embeddings_tl, train_labels_tl = extract_embeddings(train_loader_subj, model.embedding_net.convnet[0], 1000)
        # val_embeddings_tl, val_labels_tl = extract_embeddings(test_loader_subj, model.embedding_net, 1000)

        # = train_labels_tl-train_labels_tl%2
        # from torchvision import datasets, models, transforms
        # temp = model.embedding_net.children()
        # newmodel = torch.nn.Sequential(*(list(model.embedding_net.children())[:]))


        # for param in model.embedding_net.parameters():
        #     param.requires_grad = True

        #newembedding_net = torch.nn.Sequential(*(list(model.embedding_net.children())[:]))
        #
        from sklearn.manifold import TSNE
        tsne = TSNE(n_components=2,perplexity=30)
        #features = np.concatenate([train_embeddings_tl,val_embeddings_tl])
        #val_labels_tl = val_labels_tl+2
        #labels = np.concatenate([train_labels_tl,val_labels_tl])


        train_tsne = tsne.fit_transform(train_embeddings_tl[0:2000])
        # plot_embeddings(train_tsne,train_labels_tl[0:1000])
        plot_features(train_tsne,train_labels_tl[0:2000])
        plot_features3d(train_tsne,train_labels_tl[0:1000]%2)


        val_tsne = tsne.fit_transform(val_embeddings_tl)
        plot_embeddings(val_tsne, (val_labels_tl-108)-(val_labels_tl-108)%2)




        for param in model.embedding_net.parameters():
            param.requires_grad = True

        #embedding_net2 = EmbeddingDeep4CNN()
        newmodel = nn.Sequential(model.embedding_net,
                                nn.Linear(1000, 2),
                                nn.Dropout(p=0.5),
                                nn.LogSoftmax(dim=1),
                                ).to(device)

        print(newmodel)

        #newmodel.fc_lr = nn.Linear(1000,2)
        newmodel.to(device)
        optimizer = optim.SGD(newmodel.parameters(), lr=0.001, momentum=0.9)
        #optimizer = optim.Adam(newmodel.parameters())

        for epoch in range(1, 100):
            train(args, newmodel, device, train_loader, optimizer, epoch)
            j_loss, j_score = eval(args, newmodel, device, test_loader)

        if args.save_model:
            torch.save(newmodel.state_dict(),'clf_83_8.pt')
        newmodel.load_state_dict(torch.load(load_model_path))


        # Visualize feature maps
        activation = {}
        def get_activation(name):
            def hook(model, input, output):
                activation[name] = output.detach()
            return hook

        handle = model.embedding_net.convnet[0].register_forward_hook(get_activation('fc'))
        handle.remove()
        model.embedding_net.convnet[0]._forward_hooks.clear()
        train_loader.dataset

        with torch.no_grad():
            model.eval()
            # num_ftrs = model.embedding_net.fc.out_features
            embeddings = np.zeros((len(train_loader.dataset), num_ftrs))
            labels = np.zeros(len(train_loader.dataset))
            k = 0
            for images, target in train_loader:
                if cuda:
                    images = images.cuda()

                embeddings[k:k + len(images)] = model.get_embedding(images).data.cpu().numpy()
                labels[k:k + len(images)] = target.numpy()
                k += len(images)



        features = SaveFeatures(model.embedding_net.convnet[0])

        temp = features.features.data.cpu().numpy()

        del features.features
        torch.cuda.empty_cache()

        for images, target in train_loader:
            if cuda:
                images = images.cuda()

            output = model.embedding_net(images)
        activation = []

        def get_activation():
            def hook(model, input, output):
                activation.append(output)
                print(output)
            return hook


        act = activation['conv1'].squeeze()
        fig, axarr = plt.subplots(act.size(0))
        for idx in range(act.size(0)):
            axarr[idx].imshow(act[idx])

        actmap = []
        def printnorm(self, input, output):
            # input is a tuple of packed inputs
            # output is a Tensor. output.data is the Tensor we are interested

            print('Inside ' + self.__class__.__name__ + ' forward')
            print('')
            print('input: ', type(input))
            print('input[0]: ', type(input[0]))
            print('output: ', type(output))
            print('')
            print('input size:', input[0].size())
            print('output size:', output.data.size())
            print('output norm:', output.data.norm())
            return output.data


        model.embedding_net.convnet[0].register_forward_hook(printnorm)

        out = model(input)

        fig, axarr = plt.subplots(10)
        for idx in range(10):
            axarr[idx].imshow(temp[idx,1,:,:])
Пример #3
0
log_interval = 100
patience = 4
fit_triplet(triplet_train_loader, triplet_test_loader, model, loss_fn,
            optimizer, scheduler, patience, n_epoch, cuda, log_interval)
torch.save(model, "./data/TripletNetwork.pt")

model = torch.load("./data/TripletNetwork.pt")
#below for unlabeled data

TEST_CSV = "../../Data/data/originalVectors"
with open(TEST_CSV) as csv_file:
    with open('../../Data/data/reducedVectors-tripletNet', 'w') as writeFile:
        csv_reader = csv.reader(csv_file, delimiter=' ')
        for row in csv_reader:
            vec = [float(k) for k in row]
            vec = torch.FloatTensor(vec)
            writeFile.write(
                ' '.join(map(str,
                             model.get_embedding(vec).data.numpy())) + "\n")
        writeFile.close()
#below for labeled data
# TEST_CSV = "../../Data/data/originalVectors-MNIST"
# with open(TEST_CSV) as csv_file:
#     with open('../../Data/data/reducedVectors-tripletNet-MNIST', 'w') as writeFile:
#         csv_reader = csv.reader(csv_file, delimiter=' ')
#         for row in csv_reader:
#             vec = [float(k) for k in row]
#             vec = torch.FloatTensor(vec)
#             writeFile.write(' '.join(map(str, model.get_embedding(vec).data.numpy())) + "\n")
#         writeFile.close()