Пример #1
0
def _communicability_to_anchors(graph, anchors, normalize=False):
    comm = {}
    for node, comm_dict in nx.communicability_exp(graph).items():
        d = np.array([comm_dict[a] for a in anchors])
        if normalize:
            d = normalized(d)
        comm[node] = d
    return comm
Пример #2
0
def visualize_communicability():
    if len(sys.argv) < 2:
        print(f'Usage {sys.argv[1]} <network>')
        return

    net = fio.read_network(sys.argv[1])
    name = fio.get_network_name(sys.argv[1])
    communicability = nx.communicability_exp(net.G)
    scores = np.array(
        [sum(communicability[u].values()) for u in communicability.keys()])
    plt.title(f'{name}\nCommunicability')
    plt.hist(scores)  # type: ignore
    plt.show(block=False)
    print(f'Network score: {np.sum(scores)}')
    scores = (scores - np.min(scores)) / (np.max(scores) - np.min(scores))
    node_size = 300 * scores
    visualize_network(net.G, net.layout, name, node_size=node_size)
def getHugeStats(g):
    
    if nx.is_directed(g) == True:
        P1 = pd.DataFrame({'load_centrality': nx.load_centrality(g, weight='weight'),
                           'betweenness_centrality': nx.betweenness_centrality(g, weight='weight'),
                           
                           'pagerank': pd.Series(nx.pagerank(g, alpha=0.85, personalization=None, max_iter=100, tol=1e-08, nstart=None, weight='weight')),
                           'eigenvector_centrality': nx.eigenvector_centrality_numpy(g),
                           'degree_centrality': pd.Series(nx.degree_centrality(g)),
                           'in_degree_centrality': pd.Series(nx.in_degree_centrality(g)),
                           'out_degree_centrality': pd.Series(nx.out_degree_centrality(g))})
                           
    else:
        P1 = pd.Panel({'spl': pd.DataFrame(nx.shortest_path_length(g)),
                          'apdp': pd.DataFrame(nx.all_pairs_dijkstra_path(g)), 
                          'apdl': pd.DataFrame(nx.all_pairs_dijkstra_path_length(g)),
                          'c_exp': pd.DataFrame(nx.communicability_exp(g))})    
    return P1
Пример #4
0
def save_communicabilities():
    network_classes = (
        'BarabasiAlbert(N=500,m=2)', 'BarabasiAlbert(N=500,m=3)',
        'BarabasiAlbert(N=500,m=4)',
        'ConnComm(N_comm=10,ib=(5, 10),num_comms=50,ob=(3, 6))',
        'ConnComm(N_comm=20,ib=(15, 20),num_comms=25,ob=(3, 6))',
        'ErdosRenyi(N=500,p=0.01)', 'ErdosRenyi(N=500,p=0.02)',
        'ErdosRenyi(N=500,p=0.03)', 'WattsStrogatz(N=500,k=4,p=0.01)',
        'WattsStrogatz(N=500,k=4,p=0.02)', 'WattsStrogatz(N=500,k=5,p=0.01)')
    rows = []
    for class_name in tqdm(network_classes):
        nets = fio.read_network_class(class_name)
        communicabilties = (sum(
            c for inner_values in nx.communicability_exp(net.G).values()
            for c in inner_values.values()) for net in tqdm(nets))
        rows.append([class_name])
        rows.append(list(map(str, communicabilties)))

    with open('communicabilities.csv', 'w', newline='') as csv_file:
        writer = csv.writer(csv_file)
        writer.writerows(rows)
def infection_entropy_vs_communicability():
    classes = ('BarabasiAlbert(N=500,m=2)', 'BarabasiAlbert(N=500,m=3)',
               'BarabasiAlbert(N=500,m=4)',
               'ConnComm(N_comm=10,ib=(5, 10),num_comms=50,ob=(3, 6))',
               'ConnComm(N_comm=20,ib=(15, 20),num_comms=25,ob=(3, 6))',
               'ErdosRenyi(N=500,p=0.01)', 'ErdosRenyi(N=500,p=0.02)',
               'ErdosRenyi(N=500,p=0.03)', 'WattsStrogatz(N=500,k=4,p=0.01)',
               'WattsStrogatz(N=500,k=4,p=0.02)',
               'WattsStrogatz(N=500,k=5,p=0.01)')
    n_bins = 100  # 1000 should be 1 decimal point of precision for percentages

    csv_rows: List[Union[List[str], List[int], List[float]]] = []
    for class_ in classes:
        rng = np.random.default_rng(777)
        nets = fio.read_network_class(class_)
        communicabilities: List[int] = [
            sum(cell for row in nx.communicability_exp(net.G).values()
                for cell in row.values())
            for net in tqdm(nets, desc='Communicability')
        ]
        entropies = [
            calc_entropy(
                run_sim_batch(net, 500, sd.Disease(4, .3),
                              sd.SimplePressureBehavior(net, rng, 2, .25),
                              rng), n_bins)
            for net in tqdm(nets, 'Simulations & Entropy')
        ]
        csv_rows.append(['Network Class', class_])
        csv_rows.append(['Communicability'])
        csv_rows.append(communicabilities)
        csv_rows.append(['Entropy'])
        csv_rows.append(entropies)

    with open(
            f'results/communicability-vs-infection-entropy-bins-{n_bins}.csv',
            'w',
            newline='') as csv_file:
        writer = csv.writer(csv_file)
        writer.writerows(csv_rows)
Пример #6
0
    def dist(self, G1, G2):
        r"""Compares the communicability matrix of two graphs.

        This distance is based on the communicability matrix, :math:`C`, of
        a graph consisting of elements :math:`c_{ij}` which are values
        corresponding to the numbers of shortest paths of length :math:`k`
        between nodes :math:`i` and :math:`j`.

        The commmunicability matrix is symmetric, which means the
        communicability sequence is formed by flattening the upper
        triangular of :math:`C`, which is then normalized to create the
        communicability sequence, :math:`P`.

        The communicability sequence entropy distance between two graphs,
        `G1` and `G2`, is the Jensen-Shannon divergence between these
        communicability sequence distributions, :math:`P1` and :math:`P2`
        of the two graphs.

        Parameters
        ----------

        G1, G2 (nx.Graph)
            two graphs

        Returns
        -------

        dist (float)
            between zero and one, this is the communicability sequence
            distance bewtween `G1` and `G2`.

        Notes
        -----

        This function uses the networkx approximation of the
        communicability of a graph, `nx.communicability_exp`, which
        requires `G1` and `G2` to be simple undirected networks. In
        addition to the final distance scalar, `self.results` stores the
        two vectors :math:`P1` and :math:`P2`, their mixed vector,
        :math:`P0`, and their associated entropies.


        References
        ----------

        .. [1] Estrada, E., & Hatano, N. (2008). Communicability in complex
               networks. Physical Review E, 77(3), 036111.
               https://journals.aps.org/pre/abstract/10.1103/PhysRevE.77.036111

        .. [2] Chen, D., Shi, D. D., Qin, M., Xu, S. M., & Pan,
               G. J. (2018).  Complex network comparison based on
               communicability sequence entropy. Physical Review E, 98(1),
               012319.

        """

        N1 = G1.number_of_nodes()
        N2 = G2.number_of_nodes()

        C1 = nx.communicability_exp(G1)
        C2 = nx.communicability_exp(G2)

        Ca1 = np.zeros((N1, N1))
        Ca2 = np.zeros((N2, N2))

        for i in range(Ca1.shape[0]):
            Ca1[i] = np.array(list(C1[i].values()))
        for i in range(Ca2.shape[0]):
            Ca2[i] = np.array(list(C2[i].values()))

        lil_sigma1 = np.triu(Ca1).flatten()
        lil_sigma2 = np.triu(Ca2).flatten()

        big_sigma1 = sum(lil_sigma1[np.nonzero(lil_sigma1)[0]])
        big_sigma2 = sum(lil_sigma2[np.nonzero(lil_sigma2)[0]])

        P1 = lil_sigma1 / big_sigma1
        P2 = lil_sigma2 / big_sigma2
        P1 = np.array(sorted(P1))
        P2 = np.array(sorted(P2))

        dist = entropy.js_divergence(P1, P2)

        self.results['P1'] = P1
        self.results['P2'] = P2
        self.results['dist'] = dist

        return dist
Пример #7
0
    def centrality(self):
        result = {}
        result['degree_centrality'] = nx.degree_centrality(self.graph)

        if self.directed == 'directed':
            result['in_degree_centrality'] = nx.in_degree_centrality(
                self.graph)
            result['out_degree_centrality'] = nx.out_degree_centrality(
                self.graph)

        result['closeness_centrality'] = nx.closeness_centrality(self.graph)
        result['betweenness_centrality'] = nx.betweenness_centrality(
            self.graph)

        # fix the tuple cant decode into json problem
        stringify_temp = {}
        temp = nx.edge_betweenness_centrality(self.graph)
        for key in temp.keys():
            stringify_temp[str(key)] = temp[key]
        result['edge_betweenness_centrality'] = stringify_temp

        if self.directed == 'undirected':
            result[
                'current_flow_closeness_centrality'] = nx.current_flow_closeness_centrality(
                    self.graph)
            result[
                'current_flow_betweenness_centrality'] = nx.current_flow_betweenness_centrality(
                    self.graph)

            stringify_temp = {}
            temp = nx.edge_current_flow_betweenness_centrality(self.graph)
            for key in temp.keys():
                stringify_temp[str(key)] = temp[key]
            result['edge_current_flow_betweenness_centrality'] = stringify_temp

            result[
                'approximate_current_flow_betweenness_centrality'] = nx.approximate_current_flow_betweenness_centrality(
                    self.graph)
            result['eigenvector_centrality'] = nx.eigenvector_centrality(
                self.graph)
            result[
                'eigenvector_centrality_numpy'] = nx.eigenvector_centrality_numpy(
                    self.graph)
            result['katz_centrality'] = nx.katz_centrality(self.graph)
            result['katz_centrality_numpy'] = nx.katz_centrality_numpy(
                self.graph)
            result['communicability'] = nx.communicability(self.graph)
            result['communicability_exp'] = nx.communicability_exp(self.graph)
            result[
                'communicability_centrality'] = nx.communicability_centrality(
                    self.graph)
            result[
                'communicability_centrality_exp'] = nx.communicability_centrality_exp(
                    self.graph)
            result[
                'communicability_betweenness_centrality'] = nx.communicability_betweenness_centrality(
                    self.graph)
            result['estrada_index'] = nx.estrada_index(self.graph)

        result['load_centrality'] = nx.load_centrality(self.graph)

        stringify_temp = {}
        temp = nx.edge_load(self.graph)
        for key in temp.keys():
            stringify_temp[str(key)] = temp[key]
        result['edge_load'] = stringify_temp
        result['dispersion'] = nx.dispersion(self.graph)

        fname_centra = self.DIR + '/centrality.json'
        with open(fname_centra, "w") as f:
            json.dump(result, f, cls=SetEncoder, indent=2)
        print(fname_centra)
Пример #8
0
def low_communicability_objective(edges_present: np.ndarray) -> float:
    """Accept a bitset of edges and return the sum of the communicability values."""
    net = lib.edge_set_to_network(edges_present)
    communicability = nx.communicability_exp(net.G)
    return sum(c for inner_values in communicability.values() for c in inner_values.values())
Пример #9
0
    def dist(self, G1, G2):
        """
        This distance is based on the communicability matrix, $C$, of a graph 
        consisting of elements $c_{ij}$ which are values corresponding to the 
        numbers of shortest paths of length $k$ between nodes $i$ and $j$.
        
        See: Estrada, E., & Hatano, N. (2008). Communicability in complex 
        networks. Physical Review E, 77(3), 036111.
        https://journals.aps.org/pre/abstract/10.1103/PhysRevE.77.036111
        for a full introduction.

        The commmunicability matrix is symmetric, which means the 
        communicability sequence is formed by flattening the upper
         triangular of $C$, which is then normalized to create the 
        communicability sequence, $P$. 

        The communicability sequence entropy distance between two graphs, $G1$ 
        and $G2$, is the Jensen-Shannon divergence between these communicability 
        sequence distributions, $P1$ and $P2$ of the two graphs. 

        Note: this function uses the networkx approximation of the 
        communicability of a graph, `nx.communicability_exp`, which requires 
        G1 and G2 to be simple undirected networks. In addition to the final
        distance scalar, `self.results` stores the two vectors $P1$ and $P2$, 
        their mixed vector, $P0$, and their associated entropies.

        Params
        ------
        G1 (nx.Graph): the first graph
        G2 (nx.Graph): the second graph
        
        Returns
        -------
        dist (float): between zero and one, this is the communicability 
                      sequence distance bewtween G1 and G2.
        
        """

        N1 = G1.number_of_nodes()
        N2 = G2.number_of_nodes()

        C1 = nx.communicability_exp(G1)
        C2 = nx.communicability_exp(G2)

        Ca1 = np.zeros((N1, N1))
        Ca2 = np.zeros((N2, N2))

        for i in range(Ca1.shape[0]):
            Ca1[i] = np.array(list(C1[i].values()))
        for i in range(Ca2.shape[0]):
            Ca2[i] = np.array(list(C2[i].values()))

        lil_sigma1 = np.triu(Ca1).flatten()
        lil_sigma2 = np.triu(Ca2).flatten()

        big_sigma1 = sum(lil_sigma1[np.nonzero(lil_sigma1)[0]])
        big_sigma2 = sum(lil_sigma2[np.nonzero(lil_sigma2)[0]])

        P1 = lil_sigma1 / big_sigma1
        P2 = lil_sigma2 / big_sigma2
        P0 = (P1 + P2) / 2

        H1 = sp.stats.entropy(P1)
        H2 = sp.stats.entropy(P2)
        H0 = sp.stats.entropy(P0)
        dist = np.sqrt(H0 - 0.5 * (H1 + H2))

        self.results['P1'] = P1
        self.results['P2'] = P2
        self.results['P0'] = P0

        self.results['entropy_1'] = H1
        self.results['entropy_2'] = H2
        self.results['entropy_mixture'] = H0
        self.results['dist'] = dist

        return dist
Пример #10
0
 def communicability_exp(uG, ni, nj, rand_node):
     c = nx.communicability_exp(uG)
     return c[ni][nj], c[ni][rand_node]