Пример #1
0
    def get_components(self):
        comps = nx.connected_components(self.FG)
        component_map = dict()
        components = []
        nonstuck = set()
        component_node_seen = dict()

        for comp in comps:
            bry = nx.node_boundary(self.G, comp)
            comp_set = set()
            bry_set = set()
            for node in comp:
                comp_set.add(node)
                component_node_seen[node] = 1
            for node in bry:
                bry_set.add(node)
            component_node_seen[node] = 1
            components.append((comp_set, bry_set))
            _nonstuck = comp | bry
            for node in _nonstuck:
                component_map.setdefault(node, list()).append((comp, bry))
            nonstuck |= _nonstuck

        # stuck = set(self.G.nodes)-nonstuck
        ns_bry = nx.node_boundary(self.G, nonstuck)
        for stuck_node in ns_bry:
            stuck_node_bry = nx.node_boundary(self.G, [stuck_node])
            component_map.setdefault(stuck_node, list()).append(
                (set(stuck_node), stuck_node_bry))
        stuck = set(
            [node for node in self.G if node not in component_node_seen])
        if stuck:
            components.append((set(), stuck))

        return component_map, components
Пример #2
0
 def test_null_node_boundary(self):
     """null nxgraph has empty node boundaries"""
     null=self.null
     assert_equal(nx.node_boundary(null,[]),[])
     assert_equal(nx.node_boundary(null,[],[]),[])
     assert_equal(nx.node_boundary(null,[1,2,3]),[])
     assert_equal(nx.node_boundary(null,[1,2,3],[4,5,6]),[])
     assert_equal(nx.node_boundary(null,[1,2,3],[3,4,5]),[])
Пример #3
0
 def test_null_graph(self):
     """Tests that the null graph has empty node boundaries."""
     null = nx.null_graph()
     assert_equal(nx.node_boundary(null, []), set())
     assert_equal(nx.node_boundary(null, [], []), set())
     assert_equal(nx.node_boundary(null, [1, 2, 3]), set())
     assert_equal(nx.node_boundary(null, [1, 2, 3], [4, 5, 6]), set())
     assert_equal(nx.node_boundary(null, [1, 2, 3], [3, 4, 5]), set())
Пример #4
0
 def test_null_node_boundary(self):
     """null graph has empty node boundaries"""
     null = self.null
     assert_equal(nx.node_boundary(null, []), [])
     assert_equal(nx.node_boundary(null, [], []), [])
     assert_equal(nx.node_boundary(null, [1, 2, 3]), [])
     assert_equal(nx.node_boundary(null, [1, 2, 3], [4, 5, 6]), [])
     assert_equal(nx.node_boundary(null, [1, 2, 3], [3, 4, 5]), [])
Пример #5
0
 def test_null_graph(self):
     """Tests that the null graph has empty node boundaries."""
     null = nx.null_graph()
     assert_equal(nx.node_boundary(null, []), set())
     assert_equal(nx.node_boundary(null, [], []), set())
     assert_equal(nx.node_boundary(null, [1, 2, 3]), set())
     assert_equal(nx.node_boundary(null, [1, 2, 3], [4, 5, 6]), set())
     assert_equal(nx.node_boundary(null, [1, 2, 3], [3, 4, 5]), set())
Пример #6
0
    def closeSeparator(graph: networkx.Graph, vertexSetA, b):
        neighborhoodOfA = networkx.node_boundary(graph, vertexSetA)

        # can this be optimized away?
        graph = graph.copy()
        graph.remove_nodes_from(neighborhoodOfA)

        verticesOfConnectedComponentContainingB = networkx.node_connected_component(
            graph, b)

        return set(
            networkx.node_boundary(graph,
                                   verticesOfConnectedComponentContainingB))
Пример #7
0
 def test_directed(self):
     """Tests the node boundary of a directed graph."""
     G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)])
     S = {0, 1}
     boundary = nx.node_boundary(G, S)
     expected = {2}
     assert_equal(boundary, expected)
def get_cone(G, l, ideal):
    cone = ideal
    while l > 0:
        for item in list(nx.node_boundary(G, cone)):
            cone.append(item)
        l -= 1
    return cone
Пример #9
0
def boundary_expansion(G, S):
    """Returns the boundary expansion of the set `S`.

    The *boundary expansion* is the quotient of the size of the edge
    boundary and the cardinality of *S*. [1]

    Parameters
    ----------
    G : NetworkX graph

    S : sequence
        A sequence of nodes in `G`.

    Returns
    -------
    number
        The boundary expansion of the set `S`.

    See also
    --------
    edge_expansion
    mixing_expansion
    node_expansion

    References
    ----------
    .. [1] Vadhan, Salil P.
           "Pseudorandomness."
           *Foundations and Trends in Theoretical Computer Science*
           7.1–3 (2011): 1–336.
           <http://dx.doi.org/10.1561/0400000010>

    """
    return len(nx.node_boundary(G, S)) / len(S)
Пример #10
0
    def get_boundary(self, vertices, remove_danglers=False):
        """Return interior and exterior boundary sets for `vertices`.
        If `remove_danglers` is True vertices in the internal boundary with
        only one neighbor in the internal boundary will be moved to the external
        boundary.
        """
        if not len(vertices):
            return [], []

        import networkx as nx

        # Use networkx to get external boundary
        external_boundary = set(nx.node_boundary(self.graph, vertices))

        # Find adjacent vertices to get inner boundary
        internal_boundary = set.union(*[set(self.graph[v].keys())
                                        for v in external_boundary]).intersection(set(vertices))

        if remove_danglers:
            ingraph = self.graph.subgraph(internal_boundary)
            danglers = [n for n,d in ingraph.degree().items() if d==1]
            while danglers:
                internal_boundary -= set(danglers)
                external_boundary |= set(danglers)

                ingraph = self.graph.subgraph(internal_boundary)
                danglers = [n for n,d in ingraph.degree().items() if d<2]

        return list(internal_boundary), list(external_boundary)
Пример #11
0
 def test_multigraph(self):
     """Tests the node boundary of a multigraph."""
     G = nx.MultiGraph(list(nx.cycle_graph(5).edges()) * 2)
     S = {0, 1}
     boundary = nx.node_boundary(G, S)
     expected = {2, 4}
     assert_equal(boundary, expected)
Пример #12
0
 def test_multigraph(self):
     """Tests the node boundary of a multigraph."""
     G = nx.MultiGraph(list(nx.cycle_graph(5).edges()) * 2)
     S = {0, 1}
     boundary = nx.node_boundary(G, S)
     expected = {2, 4}
     assert_equal(boundary, expected)
Пример #13
0
def get_boundary(surf, vertices, remove_danglers=False):
    """Return interior and exterior boundary sets for `vertices`.
    If `remove_danglers` is True vertices in the internal boundary with
    only one neighbor in the internal boundary will be moved to the external
    boundary.
    """
    if not len(vertices):
        return [], []

    import networkx as nx

    # Use networkx to get external boundary
    external_boundary = set(nx.node_boundary(surf.graph, vertices))

    # Find adjacent vertices to get inner boundary
    internal_boundary = set.union(*[set(surf.graph[v].keys())
                                    for v in external_boundary]).intersection(set(vertices))

    if remove_danglers:
        ingraph = surf.graph.subgraph(internal_boundary)
        danglers = [n for n,d in ingraph.degree().items() if d==1]
        while danglers:
            internal_boundary -= set(danglers)
            external_boundary |= set(danglers)

            ingraph = surf.graph.subgraph(internal_boundary)
            danglers = [n for n,d in ingraph.degree().items() if d<2]

    return list(internal_boundary), list(external_boundary)
Пример #14
0
 def test_directed(self):
     """Tests the node boundary of a directed graph."""
     G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)])
     S = {0, 1}
     boundary = nx.node_boundary(G, S)
     expected = {2}
     assert_equal(boundary, expected)
Пример #15
0
def boundary_expansion(G, S):
    """Returns the boundary expansion of the set ``S``.

    The *boundary expansion* is the quotient of the size of the edge
    boundary and the cardinality of *S*. [1]

    Parameters
    ----------
    G : NetworkX graph

    S : sequence
        A sequence of nodes in ``G``.

    Returns
    -------
    number
        The boundary expansion of the set ``S``.

    See also
    --------
    edge_expansion
    mixing_expansion
    node_expansion

    References
    ----------
    .. [1] Vadhan, Salil P.
           "Pseudorandomness."
           *Foundations and Trends
            in Theoretical Computer Science* 7.1–3 (2011): 1–336.
           <http://dx.doi.org/10.1561/0400000010>

    """
    return len(nx.node_boundary(G, S)) / len(S)
Пример #16
0
 def test_multidigraph(self):
     """Tests the edge boundary of a multdiigraph."""
     edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]
     G = nx.MultiDiGraph(edges * 2)
     S = {0, 1}
     boundary = nx.node_boundary(G, S)
     expected = {2}
     assert_equal(boundary, expected)
Пример #17
0
 def test_multidigraph(self):
     """Tests the edge boundary of a multdiigraph."""
     edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]
     G = nx.MultiDiGraph(edges * 2)
     S = {0, 1}
     boundary = nx.node_boundary(G, S)
     expected = {2}
     assert_equal(boundary, expected)
Пример #18
0
 def test_complete_graph(self):
     K10 = cnlti(nx.complete_graph(10), first_label=1)
     assert_equal(nx.node_boundary(K10, []), set())
     assert_equal(nx.node_boundary(K10, [], []), set())
     assert_equal(nx.node_boundary(K10, [1, 2, 3]), {4, 5, 6, 7, 8, 9, 10})
     assert_equal(nx.node_boundary(K10, [4, 5, 6]), {1, 2, 3, 7, 8, 9, 10})
     assert_equal(nx.node_boundary(K10, [3, 4, 5, 6, 7]), {1, 2, 8, 9, 10})
     assert_equal(nx.node_boundary(K10, [4, 5, 6], []), set())
     assert_equal(nx.node_boundary(K10, K10), set())
     assert_equal(nx.node_boundary(K10, [1, 2, 3], [3, 4, 5]), {4, 5})
Пример #19
0
 def test_complete_graph(self):
     K10 = cnlti(nx.complete_graph(10), first_label=1)
     assert_equal(nx.node_boundary(K10, []), set())
     assert_equal(nx.node_boundary(K10, [], []), set())
     assert_equal(nx.node_boundary(K10, [1, 2, 3]), {4, 5, 6, 7, 8, 9, 10})
     assert_equal(nx.node_boundary(K10, [4, 5, 6]), {1, 2, 3, 7, 8, 9, 10})
     assert_equal(nx.node_boundary(K10, [3, 4, 5, 6, 7]), {1, 2, 8, 9, 10})
     assert_equal(nx.node_boundary(K10, [4, 5, 6], []), set())
     assert_equal(nx.node_boundary(K10, K10), set())
     assert_equal(nx.node_boundary(K10, [1, 2, 3], [3, 4, 5]), {4, 5})
def get_boundary_nodes(G, district):
    #takes in VTD adjacency graph G and district identifier (string),
    #returns list of boundary nodes in that district
    complement_nodes = []
    for node in G.nodes():
        if G.node[node]['DISTRICT'] != district:
            complement_nodes.append(node)
    boundary_nodes_of_district = nx.node_boundary(G, complement_nodes)
    return boundary_nodes_of_district
Пример #21
0
 def test_path_graph(self):
     P10 = cnlti(nx.path_graph(10), first_label=1)
     assert_equal(nx.node_boundary(P10, []), set())
     assert_equal(nx.node_boundary(P10, [], []), set())
     assert_equal(nx.node_boundary(P10, [1, 2, 3]), {4})
     assert_equal(nx.node_boundary(P10, [4, 5, 6]), {3, 7})
     assert_equal(nx.node_boundary(P10, [3, 4, 5, 6, 7]), {2, 8})
     assert_equal(nx.node_boundary(P10, [8, 9, 10]), {7})
     assert_equal(nx.node_boundary(P10, [4, 5, 6], [9, 10]), set())
Пример #22
0
 def test_path_graph(self):
     P10 = cnlti(nx.path_graph(10), first_label=1)
     assert_equal(nx.node_boundary(P10, []), set())
     assert_equal(nx.node_boundary(P10, [], []), set())
     assert_equal(nx.node_boundary(P10, [1, 2, 3]), {4})
     assert_equal(nx.node_boundary(P10, [4, 5, 6]), {3, 7})
     assert_equal(nx.node_boundary(P10, [3, 4, 5, 6, 7]), {2, 8})
     assert_equal(nx.node_boundary(P10, [8, 9, 10]), {7})
     assert_equal(nx.node_boundary(P10, [4, 5, 6], [9, 10]), set())
Пример #23
0
 def test_path_graph(self):
     P10 = cnlti(nx.path_graph(10), first_label=1)
     assert nx.node_boundary(P10, []) == set()
     assert nx.node_boundary(P10, [], []) == set()
     assert nx.node_boundary(P10, [1, 2, 3]) == {4}
     assert nx.node_boundary(P10, [4, 5, 6]) == {3, 7}
     assert nx.node_boundary(P10, [3, 4, 5, 6, 7]) == {2, 8}
     assert nx.node_boundary(P10, [8, 9, 10]) == {7}
     assert nx.node_boundary(P10, [4, 5, 6], [9, 10]) == set()
Пример #24
0
def star_decomp(G, center, delta, eps, num_edges):
    H = G.copy()
    distances, radius = distances_to_center(G, center)
    ball_radius, ball = ball_cut(G, distances, radius, delta, num_edges,
                                 center)
    node_boundary = set(nx.node_boundary(G, ball))
    H.remove_nodes_from(ball)
    cones, anchors = cone_decomp(H, node_boundary, eps * radius / 2, num_edges)
    bridges = list(get_bridges(G, center, anchors, floor(ball_radius)))
    partitions = [(ball, center)] + cones
    return partitions, bridges
Пример #25
0
def cone_cut(G, x, l, L, S, num_edges, distances):
    r = l
    ideal = get_ideal(G, S, x, distances)
    cone = ideal if r == 0 else get_cone(G, r, ideal)
    mu, cone_cut_size = cone_properties(G, cone, num_edges)
    while cone_cut_size > mu / (L - l):
        for item in list(nx.node_boundary(G, cone)):
            cone.append(item)
        mu, cone_cut_size = cone_properties(G, cone, num_edges)
        r += 1
    return r, cone
Пример #26
0
 def test_path_node_boundary(self):
     """Check node boundaries in path nxgraph."""
     P10=self.P10
     assert_equal(nx.node_boundary(P10,[]),[])
     assert_equal(nx.node_boundary(P10,[],[]),[])
     assert_equal(nx.node_boundary(P10,[1,2,3]),[4])
     assert_equal(sorted(nx.node_boundary(P10,[4,5,6])),[3, 7])
     assert_equal(sorted(nx.node_boundary(P10,[3,4,5,6,7])),[2, 8])
     assert_equal(nx.node_boundary(P10,[8,9,10]),[7])
     assert_equal(sorted(nx.node_boundary(P10,[4,5,6],[9,10])),[])
Пример #27
0
 def test_path_node_boundary(self):
     """Check node boundaries in path graph."""
     P10 = self.P10
     assert_equal(nx.node_boundary(P10, []), [])
     assert_equal(nx.node_boundary(P10, [], []), [])
     assert_equal(nx.node_boundary(P10, [1, 2, 3]), [4])
     assert_equal(sorted(nx.node_boundary(P10, [4, 5, 6])), [3, 7])
     assert_equal(sorted(nx.node_boundary(P10, [3, 4, 5, 6, 7])), [2, 8])
     assert_equal(nx.node_boundary(P10, [8, 9, 10]), [7])
     assert_equal(sorted(nx.node_boundary(P10, [4, 5, 6], [9, 10])), [])
Пример #28
0
    def test_k10_node_boundary(self):
        """Check node boundaries in K10"""
        K10=self.K10

        assert_equal(nx.node_boundary(K10,[]),[])
        assert_equal(nx.node_boundary(K10,[],[]),[])
        assert_equal(sorted(nx.node_boundary(K10,[1,2,3])),
                     [4, 5, 6, 7, 8, 9, 10])
        assert_equal(sorted(nx.node_boundary(K10,[4,5,6])),
                     [1, 2, 3, 7, 8, 9, 10])
        assert_equal(sorted(nx.node_boundary(K10,[3,4,5,6,7])),
                            [1, 2, 8, 9, 10])
        assert_equal(nx.node_boundary(K10,[4,5,6],[]),[])
        assert_equal(nx.node_boundary(K10,K10),[])
        assert_equal(nx.node_boundary(K10,[1,2,3],[3,4,5]),[4, 5])
Пример #29
0
    def test_k10_node_boundary(self):
        """Check node boundaries in K10"""
        K10 = self.K10

        assert_equal(nx.node_boundary(K10, []), [])
        assert_equal(nx.node_boundary(K10, [], []), [])
        assert_equal(sorted(nx.node_boundary(K10, [1, 2, 3])),
                     [4, 5, 6, 7, 8, 9, 10])
        assert_equal(sorted(nx.node_boundary(K10, [4, 5, 6])),
                     [1, 2, 3, 7, 8, 9, 10])
        assert_equal(sorted(nx.node_boundary(K10, [3, 4, 5, 6, 7])),
                     [1, 2, 8, 9, 10])
        assert_equal(nx.node_boundary(K10, [4, 5, 6], []), [])
        assert_equal(nx.node_boundary(K10, K10), [])
        assert_equal(nx.node_boundary(K10, [1, 2, 3], [3, 4, 5]), [4, 5])
Пример #30
0
    def labelset(self, label):
        """
        Return the set of nodeids for |EPs| that share a label.

        Args:
            label: The label that returned nodeids share.
        Returns:
            A set of nodeids, which may be an empty set.
        """
        if label not in self._graph.labels:
            raise XmrsStructureError(
                'Cannot get labelset for {}. It is not used as a label.'
                .format(str(label))
            )
        lblset = set(nx.node_boundary(self._graph, [label]))
        return lblset
Пример #31
0
 def update(self, node, old_district, new_district):
     other_districts_nodes = nx.Graph()
     for i in range(self.number_districts):
         if i is not old_district:
             other_districts_nodes.add_nodes_from(self.districts[i].nodes())
     other_districts = self.G.subgraph(other_districts_nodes)
     old_boundary_nodes = nx.node_boundary(self.G, [node], other_districts)
     for n in old_boundary_nodes:
         if n in self.boundary_nodes:
             self.boundary_nodes.remove(n)
         if n in self.boundary_nodes_list:
             self.boundary_nodes_list[old_district].remove(n)
     updated_old_district = set(self.district_list[old_district].nodes())
     updated_old_district.remove(node)
     updated_new_district = set(self.district_list[new_district].nodes())
     updated_new_district.add(node)
     self.G.node[node]["district"] = new_district
     self.district_list[old_district] = self.G.subgraph(updated_old_district)
     self.district_list[new_district] = self.G.subgraph(updated_new_district)
Пример #32
0
def resolve_input_boundary(flat_graph, non_subject_nodes):
    pre_run_result_dict: Dict[pe.Node, InterfaceResult] = dict()
    for (u, v, c) in nx.edge_boundary(flat_graph, non_subject_nodes, data=True):
        if u not in pre_run_result_dict:
            pre_run_result_dict[u] = u.run()

        connections = c["connect"]
        result = pre_run_result_dict[u]
        assert result.outputs is not None

        for u_field, v_field in connections:
            if isinstance(u_field, tuple):
                raise NotImplementedError()

            value = result.outputs.trait_get()[u_field]
            v.set_input(v_field, value)

    for u in pre_run_result_dict.keys():
        rmtree(u.output_dir(), ignore_errors=True)
        flat_graph.remove_node(u)

    assert len(nx.node_boundary(flat_graph, non_subject_nodes)) == 0
Пример #33
0
 def __generate_candidate_graph(self, seed, max_size):
     logging.debug('seed: {}'.format(seed))
     subnetwork = [seed]
     SS = self.S.loc[seed, seed]
     decrements = [np.sqrt(SS)]
     while len(subnetwork) < max_size:
         # find the nodes that are adjacent to current network f
         boundary_nodes = nx.node_boundary(self.M, subnetwork)
         if not boundary_nodes:
             logging.debug('No further connected nodes')
             break
         maxgain = -np.inf
         i = len(subnetwork)
         # for each possible node to add to subnetwork
         for v in boundary_nodes:
             # compute the decrease in SSE due to addition of this node
             # for explanation of this computation see documentation
             SStrial = (SS + 2 * np.sum(self.S.loc[subnetwork, v]) +
                        self.S.loc[v, v])
             # how much would addition of this node improve the avg error?
             SStest = SStrial / (i + 1) - SS / i
             if SStest > maxgain:
                 maxgain = SStest
                 bestSS = SStrial
                 best = v
         if maxgain < 0.0:
             # no adjacent nodes improve the error
             logging.debug('No further improvement possible.')
             break
         # add the node that improves error most to the growing subnetwork
         SS = bestSS
         subnetwork.append(best)
         decrements.append(np.sqrt(maxgain))
         logging.debug(
             'subnetwork size {} -- added {}, improvement {}'.format(
                 len(subnetwork), best, np.sqrt(maxgain)))
     c = self.__average_column(subnetwork)
     error = np.linalg.norm(self.X - self.__outer(c, subnetwork))
     return subnetwork, error, decrements
def remove_duplicates(G, communities, delta):
    # Create node2com dictionary
    node2com = defaultdict(list)
    com_id = 0
    for comm in communities:
        for node in comm:
            node2com[node].append(com_id)
        com_id += 1

    deleted = dict()
    i = 0
    for i in range(len(communities)):
        comm = communities[i]
        if deleted.get(i, 0) == 0:
            nbrnodes = nx.node_boundary(G, comm)
            for nbr in nbrnodes:
                nbrcomids = node2com[nbr]
                for nbrcomid in nbrcomids:
                    if i != nbrcomid and deleted.get(
                            i, 0) == 0 and deleted.get(nbrcomid, 0) == 0:
                        nbrcom = communities[nbrcomid]
                        distance = 1.0 - (len(set(comm) & set(nbrcom)) * 1.0 /
                                          (min(len(comm), len(nbrcom)) * 1.0))

                        if distance <= delta:
                            # Near duplicate communities found.
                            # Discard current community
                            # Followed the idea of Lee et al. in GCE
                            deleted[i] = 1
                            for node in comm:
                                node2com[node].remove(i)
    for i in range(len(communities)):
        if deleted.get(i, 0) == 1:
            communities[i] = []

    communities = filter(lambda c: c != [],
                         communities)  # Discard empty communities
    return communities
Пример #35
0
def wiki_distance(start_page_name, end_page_name):
    depth = 0
    G = nx.Graph()
    articles = scrape_page(start_page_name)
    global PAGES_SCRAPED
    PAGES_SCRAPED += 1
    print(PAGES_SCRAPED)

    for article in articles:
        G.add_edge(start_page_name, article)

    while True:
        try:
            shortest_path = nx.shortest_path(
                G, source=start_page_name, target=end_page_name
            )
            break
        except NetworkXError:
            print('No path found, continuing...')
            print(depth)
            depth += 1

        for article_boundary in nx.node_boundary(G, [start_page_name]):

            new_articles = scrape_page(article_boundary)
            for new_article in new_articles:
                G.add_edge(article_boundary, new_article)

        print('============= Next iteration')

    length = len(shortest_path) - 1
    print(
        'The shortest path is {}, and the distance is {}'.format(
            str(shortest_path), length
        )
    )
    return length
Пример #36
0
 def listMinimalSeparatorsPrivate(graph: networkx.Graph, A, U, a, b,
                                  results):
     # given A, compute componentOfSeparatedGraphContainingA, which is V(Ca(S(A)))
     SeparatorA = TakataSeparator.closeSeparator(graph, A, b)
     separatedGraph = graph.copy()
     separatedGraph.remove_nodes_from(SeparatorA)
     componentOfSeparatedGraphContainingA = networkx.node_connected_component(
         separatedGraph, a)
     if len(componentOfSeparatedGraphContainingA.union(
             U)) == 0:  # subtree is not barren
         newA = componentOfSeparatedGraphContainingA
         neighborhoodOfNewA = set(networkx.node_boundary(newA))
         possibleExpansions = set(neighborhoodOfNewA).difference(U)
         if len(possibleExpansions) != 0:
             for v in possibleExpansions:
                 TakataSeparator.listMinimalSeparatorsPrivate(
                     graph, newA.union(v), U, a, b, results)
                 TakataSeparator.listMinimalSeparatorsPrivate(
                     graph, newA, U.union(v), a, b, results)
         else:  # base case, node is a leaf
             results.add(TakataSeparator.closeSeparator(newA))
     else:
         # The subtree is barren.
         pass
Пример #37
0
 def boundary_nodes(self, nbunch, nbunch2 = None):
     nbunch = (n.node_id for n in nbunch) # only store the id in overlay
     return iter(nidb_node(self, node)
             for node in nx.node_boundary(self._graph, nbunch, nbunch2))
Пример #38
0
def get_boundary_nodes(network, subnetwork):
    #gets the list of nodes which sit on the edge of the network
    nx.node_boundary(network, subnetwork)
Пример #39
0
 def boundary_nodes(self, nbunch, nbunch2=None):
     nbunch = (n.node_id for n in nbunch)  # only store the id in overlay
     return iter(
         nidb_node(self, node)
         for node in nx.node_boundary(self._graph, nbunch, nbunch2))
 def cheeger(G, k):
     return min([
         float(len(nx.node_boundary(G, sample(G.nodes(), k)))) / k
         for n in range(100)
     ])
Пример #41
0
 def initialize_boundary(self):
     for i in range(self.number_districts):
         X = list(nx.node_boundary(self.G, self.districts[i].nodes()))
         self.boundary_nodes = self.boundary_nodes.union(X)
         self.boundary_nodes_list.append(X)
Пример #42
0
 def random_neighbor(self, graph):
     return random.sample(nx.node_boundary(self.G, graph.nodes()), 1)
Пример #43
0
 def cheeger(G, k):
     return min(len(nx.node_boundary(G, nn)) / k
                for nn in combinations(G, k))
Пример #44
0
 def cheeger(G, k):
     return min(
         float(len(nx.node_boundary(G, nn))) / k
         for nn in combinations(G, k))
Пример #45
0
print(
    f"Graph has {nx.number_of_nodes(G)} nodes with {nx.number_of_edges(G)} edges"
)
print(f"{nx.number_connected_components(G)} connected components")

for (source, target) in [("chaos", "order"), ("nodes", "graph"),
                         ("pound", "marks")]:
    print(f"Shortest path between {source} and {target} is")
    try:
        shortest_path = nx.shortest_path(G, source, target)
        for n in shortest_path:
            print(n)
    except nx.NetworkXNoPath:
        print("None")

# draw a subset of the graph
boundary = list(nx.node_boundary(G, shortest_path))
G.add_nodes_from(shortest_path, color="red")
G.add_nodes_from(boundary, color="blue")
H = G.subgraph(shortest_path + boundary)
colors = nx.get_node_attributes(H, "color")
options = {
    "node_size": 1500,
    "alpha": 0.3,
    "node_color": colors.values(),
}
pos = nx.kamada_kawai_layout(H)
nx.draw(H, pos, **options)
nx.draw_networkx_labels(H, pos, font_weight="bold")
plt.show()
Пример #46
0
 def cheeger(G,k):
     return min([float(len(nx.node_boundary(G,sample(G.nodes(),k))))/k 
                 for n in range(100)])
Пример #47
0
def unified_network_drawer(
        G,
        correlation_table,
        names,
        filename=None,
        low_threshold=0.5,
        hi_threshold=0.9,
        cols=None,
        label_fontsize=8,
        edge_alpha=1.0,
        trim_isolated_nodes=False,
        max_links=9999999,
        labels=True,
        node_size=100,
        edges=True,
        save_gml=False,
        layout="neato",
        mark_clusters=False,
        cluster_alpha_back=0.8,
        cluster_node_size=3000,
        node_alpha=0.6,
        nodes=True,
        cluster_alpha_back2=1.0,
        mark_path=None,
        mark_paths=None,
        path_color='red',
        title=None,
        edge_pad=0.03,
        title_font_size=12,
        traversal_weight=0.0,
        draw_node_boundary=False,
        node_boundary=None,
        width_adjuster=20,  # default for MDSquish
        layout_data=None,  # preexisting layout data
        **kargs):
    """
    In the kargs:
    expected_branches
    edge_color
    edge_width

    unified network draw system.

    In use by:
    network.conditions()
    network.genes()
    mdsquish.network()

    TODO:
    The edge_width is a bit messy.
    There are three major arguments:
    edge_width, width_adjuster, traversal_weight
    and they interact in complicated ways.

    zorder, lowest is further back higher is further forward

    """
    # Kargs and defaults:
    edge_color = 'grey'
    edge_width = 1.0
    if 'edge_color' in kargs and kargs['edge_color']:
        edge_color = kargs['edge_color']
    if 'edge_width' in kargs and kargs['edge_width']:
        edge_width = kargs['edge_width']

    # optional return data
    ret_groups = None
    ret_nodes = None
    ret_edges = None

    if layout_data:
        pos = layout_data
    else:
        #pos = nx.drawing.nx_agraph.graphviz_layout(G, layout) # Bug in NX 1.11
        #A = nx.to_agraph(G)
        #pos = A.graphviz_layout(G, layout)
        # pygraphviz is no longer avaialble ...
        pos = nx.spring_layout(G)

    # trim isolated nodes
    if trim_isolated_nodes:
        # The problem is, all the attributes are also unsynced...
        pass

    fig = gldraw.getfigure(**kargs)
    ax = fig.add_subplot(111)

    # get cols back in the node order:
    # Nice Py2.7 line put back to uglier style.
    #sam_map = {cond: cols[idx] for idx, cond in enumerate(self.getConditionNames())} # reorder
    if cols:
        sam_map = dict((cond, cols[idx]) for idx, cond in enumerate(names))
        cols = [sam_map[cond] for cond in G]
    else:
        cols = "grey"

    if node_boundary:  # Make the background nodes not in the node boundary more transparent
        node_alpha = 0.1

    if nodes:
        draw_nodes(G,
                   pos,
                   ax=ax,
                   node_size=node_size,
                   node_color=cols,
                   alpha=node_alpha,
                   linewidths=0,
                   zorder=5)

    #print 'univerted:', [2.0-(i[2]['weight']) for i in G.edges(data=True)]
    elarge = [
        (u, v, d) for (u, v, d) in G.edges(data=True)
        if ((traversal_weight + 1.0) - d['weight']) >= hi_threshold
    ]  # I pad and invert the weight so that pathfinding works correctly
    esmall = [(u, v, d) for (u, v, d) in G.edges(data=True)
              if ((traversal_weight + 1.0) - d['weight']) < hi_threshold
              ]  # valid as all edges must be less than 1.0-hi

    # mark clusters
    if mark_clusters:
        groups = hierarchical_clusters(G, correlation_table, names,
                                       mark_clusters)

        # get a colormap for the groups:
        colormap = cm.get_cmap("Set3", len(groups) + 1)
        colormap = colormap(numpy.arange(len(groups) + 1))

        # draw the groups by size?
        gsizes = {g: len(groups[g]) for g in groups}  # Assume py2.7 now...

        for g in groups:
            node_color = utils.rgba_to_hex(
                colormap[int(g.replace("cluster_", "")) - 1])
            draw_nodes(G,
                       pos,
                       ax=ax,
                       nodelist=groups[g],
                       node_size=cluster_node_size,
                       node_col_override=node_color,
                       node_color=node_color,
                       alpha=cluster_alpha_back2,
                       linewidths=0,
                       zorder=-gsizes[g])
        # Draw an alpha box over the entire network to fade out the groups
        # This could be replaced by imshow for nicer effect.
        xl = ax.get_xlim()
        yl = ax.get_ylim()
        if cluster_alpha_back:
            ax.add_patch(
                matplotlib.patches.Rectangle((xl[0], yl[0]),
                                             xl[1] - xl[0],
                                             yl[1] - yl[0],
                                             facecolor="white",
                                             edgecolor='none',
                                             zorder=0,
                                             alpha=cluster_alpha_back))
        ret_groups = groups

    # edges
    if edges:
        draw_edges(G,
                   pos,
                   ax,
                   edgelist=elarge,
                   width=edge_width,
                   width_adjuster=width_adjuster,
                   alpha=edge_alpha,
                   edge_color='#666666',
                   traversal_weight=traversal_weight,
                   zodrder=4)
        draw_edges(G,
                   pos,
                   ax,
                   edgelist=esmall,
                   width=edge_width,
                   width_adjuster=width_adjuster,
                   alpha=edge_alpha / 2.0,
                   edge_color='#bbbbbb',
                   traversal_weight=traversal_weight,
                   zorder=3)

    # labels
    if labels:
        draw_node_labels(G,
                         pos,
                         ax=ax,
                         font_size=label_fontsize,
                         font_family='sans-serif',
                         zorder=5)

    if mark_path:
        if isinstance(mark_path,
                      list):  # ou are probably sending your own path
            draw_edges(G,
                       pos,
                       ax,
                       edgelist=mark_path,
                       width=5.0,
                       alpha=1.0,
                       edge_color=path_color,
                       width_adjuster=width_adjuster * 2.0,
                       traversal_weight=traversal_weight,
                       zorder=6)  # in front of nodes
        else:
            ret_nodes, ret_edges = path_func_mapper[mark_path](
                G, **kargs)  # call the appropriate function
            cmap = cm.get_cmap("gist_ncar", len(ret_edges))
            cmap = cmap(numpy.arange(len(ret_edges)))
            color = [
                utils.rgba_to_hex(cmap[i]) for i, e in enumerate(ret_edges)
            ]

            for i, e in enumerate(ret_edges):
                draw_edges(G,
                           pos,
                           ax,
                           edgelist=e,
                           width=3.0,
                           alpha=1.0,
                           edge_color=color[i],
                           traversal_weight=traversal_weight,
                           zorder=6)
                # Don't draw the nodes, you also would need to get out the node name and properly reorder the node_size
            mark_path = ret_nodes  # For compatibility with network_boundary
    elif mark_paths:
        for p in mark_paths:
            draw_edges(G,
                       pos,
                       ax,
                       edgelist=mark_path,
                       width=5.0,
                       alpha=0.5,
                       edge_color=path_color,
                       width_adjuster=300,
                       traversal_weight=traversal_weight,
                       zorder=6)  # in front of nodes

    # node_boundary
    if draw_node_boundary:
        if node_boundary:
            boundary = node_boundary  # I assume it is already a boundary
        elif mark_path:  # use a path if no network_boundary sent
            boundary = nx.node_boundary(G, mark_path)
        else:
            raise AssertionError(
                'asked to draw a boundary, but no network_boundary or path available'
            )
        draw_nodes(
            G,
            pos,
            ax=ax,
            nodelist=boundary,
            node_size=node_size *
            1.2,  #don't use node_color, see if the draw_nodes can pick it up from the attributes
            alpha=0.9,
            linewidths=0.0,
            zorder=3)

    # clean up matplotlib gubbins:
    ax.set_position([0, 0, 1, 1])
    ax.set_frame_on(False)
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    # make nice edges (by default it chooses far too generous borders):
    xy = numpy.asarray([pos[v] for v in G.nodes()])
    x_min, x_max = min(xy[:, 0]), max(xy[:, 0])
    y_min, y_max = min(xy[:, 1]), max(xy[:, 1])
    x_pad = (x_max - x_min) * edge_pad
    y_pad = (y_max - y_min) * edge_pad
    ax.set_xlim(x_min - x_pad, x_max + x_pad)
    ax.set_ylim(y_min - y_pad, y_max + y_pad)

    if title:
        #ax.set_title(title)
        ax.text(x_min - (x_pad // 2),
                y_min - (y_pad // 2),
                title,
                ha='left',
                size=title_font_size)

    if save_gml:
        nx.write_gml(G, save_gml)
        config.log.info("network_drawer: saved GML '%s'" % save_gml)

    actual_filename = gldraw.savefigure(fig, filename)

    # Load the return data:
    ret = {"actual_filename": actual_filename}
    if ret_groups:
        ret["groups"] = ret_groups
    if mark_path:
        ret["nodes"] = ret_nodes
        ret["edges"] = ret_edges

    return (ret)