Пример #1
0
    def init_functions(self):
        loss = self.loss(self.target, self.network.outputs)
        val_loss = self.loss(self.target, self.network.training_outputs)

        if self.regularizer is not None:
            loss += self.regularizer(self.network)

        self.variables.update(
            step=self.step,
            loss=loss,
            val_loss=val_loss,
        )

        with tf.name_scope('training-updates'):
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

            with tf.control_dependencies(update_ops):
                training_updates = self.init_train_updates()
                training_updates.extend(update_ops)

        tf_utils.initialize_uninitialized_variables()

        self.functions.update(
            predict=tf_utils.function(inputs=as_tuple(self.network.inputs),
                                      outputs=self.network.outputs,
                                      name='optimizer/predict'),
            one_training_update=tf_utils.function(
                inputs=as_tuple(self.network.inputs, self.target),
                outputs=loss,
                updates=training_updates,
                name='optimizer/one-update-step'),
            score=tf_utils.function(inputs=as_tuple(self.network.inputs,
                                                    self.target),
                                    outputs=val_loss,
                                    name='optimizer/score'))
Пример #2
0
    def test_function_with_updates(self):
        x = tf.placeholder(name='x', dtype=tf.float32)
        w = tf.Variable(asfloat(np.ones((4, 3))), name='w')
        b = tf.Variable(asfloat(np.ones((3, ))), name='b')
        y = tf.matmul(x, w) + b

        prediction = tf_utils.function([x],
                                       y,
                                       updates=[
                                           (b, b - 0.5),
                                           w.assign(w + 0.5),
                                       ])
        tf_utils.initialize_uninitialized_variables()

        actual = prediction(np.random.random((7, 4)))
        self.assertEqual(actual.shape, (7, 3))

        np.testing.assert_array_almost_equal(
            self.eval(w),
            1.5 * np.ones((4, 3)),
        )
        np.testing.assert_array_almost_equal(
            self.eval(b),
            0.5 * np.ones((3, )),
        )
Пример #3
0
    def test_setup_parameter_updates(self):
        w1 = tf.Variable(np.ones((4, 3)))
        b1 = tf.Variable(np.zeros((3, )))
        w2 = tf.Variable(np.ones((3, 2)))

        tf_utils.initialize_uninitialized_variables([w1, b1, w2])

        updates = 2 * tf_utils.make_single_vector([w1, b1, w2]) + 1
        updates = tf_utils.setup_parameter_updates([w1, b1, w2], updates)

        sess = tf_utils.tensorflow_session()
        for parameter, new_value in updates:
            sess.run(parameter.assign(new_value))

        np.testing.assert_array_almost_equal(
            self.eval(w1),
            3 * np.ones((4, 3)),
        )
        np.testing.assert_array_almost_equal(
            self.eval(b1),
            np.ones(3),
        )
        np.testing.assert_array_almost_equal(
            self.eval(w2),
            3 * np.ones((3, 2)),
        )
Пример #4
0
    def test_function_without_updates(self):
        x = tf.placeholder(name='x', dtype=tf.float32)
        w = tf.Variable(asfloat(np.random.random((4, 3))), name='w')
        b = tf.Variable(asfloat(np.random.random((3, ))), name='b')
        y = tf.matmul(x, w) + b

        prediction = tf_utils.function([x], y)
        tf_utils.initialize_uninitialized_variables()

        actual = prediction(np.random.random((7, 4)))
        self.assertEqual(actual.shape, (7, 3))
Пример #5
0
    def test_initialize_uninitialized_variables(self):
        sess = tf_utils.tensorflow_session()

        a = tf.Variable(np.ones((4, 3)), name='a')
        b = tf.Variable(np.ones((4, 3)), name='b')
        tf_utils.initialize_uninitialized_variables()
        actual = sess.run(a + b)
        np.testing.assert_array_almost_equal(actual, 2 * np.ones((4, 3)))

        c = tf.Variable(np.ones((2, 3)), name='c')
        d = tf.Variable(np.ones((2, 3)), name='dx')
        tf_utils.initialize_uninitialized_variables([c])

        with self.assertRaisesRegexp(FailedPreconditionError, "value dx"):
            sess.run(c + d)
Пример #6
0
def save_dict(network):
    """
    Save network into the dictionary.

    Parameters
    ----------
    network : network, list of layer or network

    Returns
    -------
    dict
        Saved parameters and information about network in dictionary
        using specific format. Learn more about the NeuPy's storage
        format in the official documentation.

    Examples
    --------
    >>> from neupy import layers, storage
    >>>
    >>> network = layers.Input(10) >> layers.Softmax(3)
    >>> layers_data = storage.save_dict(network)
    >>>
    >>> layers_data.keys()
    ['layers', 'graph', 'metadata']
    """
    network = extract_network(network)
    network.create_variables()

    session = tf_utils.tensorflow_session()
    tf_utils.initialize_uninitialized_variables()

    data = {
        'metadata': {
            'language': 'python',
            'library': 'neupy',
            'version': neupy.__version__,
            'created': strftime("%a, %d %b %Y %H:%M:%S %Z", gmtime()),
        },
        # Make it as a list in order to save the right order
        # of paramters, otherwise it can be convert to the dictionary.
        'graph': network.layer_names_only(),
        'layers': [],
    }

    for layer in network:
        parameters = {}
        configs = {}

        for attrname, parameter in layer.variables.items():
            parameters[attrname] = {
                'value': asfloat(session.run(parameter)),
                'trainable': parameter.trainable,
            }

        for option_name in layer.options:
            if option_name not in parameters:
                configs[option_name] = getattr(layer, option_name)

        data['layers'].append({
            'class_name': layer.__class__.__name__,
            'name': layer.name,
            'parameters': parameters,
            'configs': configs,
        })

    return data
Пример #7
0
    def init_methods(self):
        def free_energy(visible_sample):
            with tf.name_scope('free-energy'):
                wx = tf.matmul(visible_sample, self.weight)
                wx_b = wx + self.hidden_bias

                visible_bias_term = dot(visible_sample, self.visible_bias)

                # We can get infinity when wx_b is a relatively large number
                # (maybe 100). Taking exponent makes it even larger and
                # for with float32 it can convert it to infinity. But because
                # number is so large we don't care about +1 value before taking
                # logarithms and therefore we can just pick value as it is
                # since our operation won't change anything.
                hidden_terms = tf.where(
                    # exp(30) is such a big number that +1 won't
                    # make any difference in the outcome.
                    tf.greater(wx_b, 30),
                    wx_b,
                    tf.log1p(tf.exp(wx_b)),
                )

                hidden_term = tf.reduce_sum(hidden_terms, axis=1)
                return -(visible_bias_term + hidden_term)

        def visible_to_hidden(visible_sample):
            with tf.name_scope('visible-to-hidden'):
                wx = tf.matmul(visible_sample, self.weight)
                wx_b = wx + self.hidden_bias
                return tf.nn.sigmoid(wx_b)

        def hidden_to_visible(hidden_sample):
            with tf.name_scope('hidden-to-visible'):
                wx = tf.matmul(hidden_sample, self.weight, transpose_b=True)
                wx_b = wx + self.visible_bias
                return tf.nn.sigmoid(wx_b)

        def sample_hidden_from_visible(visible_sample):
            with tf.name_scope('sample-hidden-to-visible'):
                hidden_prob = visible_to_hidden(visible_sample)
                hidden_sample = random_binomial(hidden_prob)
                return hidden_sample

        def sample_visible_from_hidden(hidden_sample):
            with tf.name_scope('sample-visible-to-hidden'):
                visible_prob = hidden_to_visible(hidden_sample)
                visible_sample = random_binomial(visible_prob)
                return visible_sample

        network_input = self.network_input
        network_hidden_input = self.network_hidden_input
        input_shape = tf.shape(network_input)
        n_samples = input_shape[0]

        weight = self.weight
        h_bias = self.hidden_bias
        v_bias = self.visible_bias
        h_samples = self.h_samples
        step = asfloat(self.step)

        with tf.name_scope('positive-values'):
            # We have to use `cond` instead of `where`, because
            # different if-else cases might have different shapes
            # and it triggers exception in tensorflow.
            v_pos = tf.cond(
                tf.equal(n_samples, self.batch_size), lambda: network_input,
                lambda: random_sample(network_input, self.batch_size))
            h_pos = visible_to_hidden(v_pos)

        with tf.name_scope('negative-values'):
            v_neg = sample_visible_from_hidden(h_samples)
            h_neg = visible_to_hidden(v_neg)

        with tf.name_scope('weight-update'):
            weight_update = (
                tf.matmul(v_pos, h_pos, transpose_a=True) -
                tf.matmul(v_neg, h_neg, transpose_a=True)) / asfloat(n_samples)

        with tf.name_scope('hidden-bias-update'):
            h_bias_update = tf.reduce_mean(h_pos - h_neg, axis=0)

        with tf.name_scope('visible-bias-update'):
            v_bias_update = tf.reduce_mean(v_pos - v_neg, axis=0)

        with tf.name_scope('flipped-input-features'):
            # Each row will have random feature marked with number 1
            # Other values will be equal to 0
            possible_feature_corruptions = tf.eye(self.n_visible)
            corrupted_features = random_sample(possible_feature_corruptions,
                                               n_samples)

            rounded_input = tf.round(network_input)
            # If we scale input values from [0, 1] range to [-1, 1]
            # than it will be easier to flip feature values with simple
            # multiplication.
            scaled_rounded_input = 2 * rounded_input - 1
            scaled_flipped_rounded_input = (
                # for corrupted_features we convert 0 to 1 and 1 to -1
                # in this way after multiplication we will flip all
                # signs where -1 in the transformed corrupted_features
                (-2 * corrupted_features + 1) * scaled_rounded_input)
            # Scale it back to the [0, 1] range
            flipped_rounded_input = (scaled_flipped_rounded_input + 1) / 2

        with tf.name_scope('pseudo-likelihood-loss'):
            # Stochastic pseudo-likelihood
            error = tf.reduce_mean(self.n_visible * tf.log_sigmoid(
                free_energy(flipped_rounded_input) -
                free_energy(rounded_input)))

        with tf.name_scope('gibbs-sampling'):
            gibbs_sampling = sample_visible_from_hidden(
                sample_hidden_from_visible(network_input))

        tf_utils.initialize_uninitialized_variables()
        self.weight_update_one_step = tf_utils.function(
            [network_input],
            error,
            name='rbm/train-epoch',
            updates=[
                (weight, weight + step * weight_update),
                (h_bias, h_bias + step * h_bias_update),
                (v_bias, v_bias + step * v_bias_update),
                (h_samples, random_binomial(p=h_neg)),
            ])
        self.score_func = tf_utils.function(
            [network_input],
            error,
            name='rbm/prediction-error',
        )
        self.visible_to_hidden_one_step = tf_utils.function(
            [network_input],
            visible_to_hidden(network_input),
            name='rbm/visible-to-hidden',
        )
        self.hidden_to_visible_one_step = tf_utils.function(
            [network_hidden_input],
            hidden_to_visible(network_hidden_input),
            name='rbm/hidden-to-visible',
        )
        self.gibbs_sampling_one_step = tf_utils.function(
            [network_input],
            gibbs_sampling,
            name='rbm/gibbs-sampling',
        )
Пример #8
0
 def training_outputs(self):
     networks_output = self.output(*as_tuple(self.inputs), training=True)
     tf_utils.initialize_uninitialized_variables()
     return networks_output