Пример #1
0
    def output(self, Q, input_state_1, input_state_2, **kwargs):
        with tf.name_scope("Q-output"):
            # Number of samples depend on the state's batch size.
            # Each iteration we can try to predict direction from
            # multiple different starting points at the same time.
            input_shape = tf.shape(input_state_1)
            n_states = input_shape[1]
            Q_shape = tf.shape(Q)

            indeces = tf.stack(
                [
                    # Numer of repetitions depends on the size of
                    # the state batch
                    tf_utils.repeat(tf.range(Q_shape[0]), n_states),

                    # Each state is a coordinate (x and y)
                    # that point to some place on a grid.
                    tf.cast(tf_utils.flatten(input_state_1), tf.int32),
                    tf.cast(tf_utils.flatten(input_state_2), tf.int32),
                ],
                axis=1)

            # Output is a matrix that has n_samples * n_states rows
            # and n_filters (which is Q.shape[1]) columns.
            return tf.gather_nd(Q, indeces)
Пример #2
0
 def test_repeat(self):
     matrix = np.array([
         [1, 2],
         [3, 4],
     ])
     actual = self.eval(tf_utils.repeat(matrix, (2, 3)))
     expected = np.array([
         [1, 1, 1, 2, 2, 2],
         [1, 1, 1, 2, 2, 2],
         [3, 3, 3, 4, 4, 4],
         [3, 3, 3, 4, 4, 4],
     ])
     np.testing.assert_array_equal(actual, expected)
Пример #3
0
 def output(self, input_value, **kwargs):
     input_value = tf.convert_to_tensor(input_value, dtype=tf.float32)
     self.fail_if_shape_invalid(input_value.shape)
     return tf_utils.repeat(input_value, as_tuple(1, self.scale, 1))