Пример #1
0
    def __init__(self, shape, name=None):
        super(Input, self).__init__(name=name)

        if isinstance(shape, tf.TensorShape):
            shape = tf_utils.shape_to_tuple(shape)

        self.shape = as_tuple(shape)
Пример #2
0
    def fail_if_shape_invalid(self, input_shapes):
        n_input_layers = len(input_shapes)

        try:
            gate_shape = input_shapes[self.gate_index]
        except IndexError:
            raise LayerConnectionError(
                "Invalid index for gating layer. Number of input "
                "layers: {}. Gating layer index: {}"
                "".format(n_input_layers, self.gate_index))

        other_shapes = exclude_index(input_shapes, self.gate_index)
        if gate_shape and len(gate_shape) != 2:
            raise LayerConnectionError(
                "Output from the gating network should be 2-dimensional. "
                "Output shape from gating layer: {!r}"
                "".format(gate_shape))

        n_expected_networks = gate_shape[-1]
        # Note: -1 from all layers in order to exclude gating layer
        if n_expected_networks != (n_input_layers - 1):
            raise LayerConnectionError(
                "Gating layer can work only for combining only {} networks, "
                "got {} networks instead."
                "".format(n_expected_networks, (n_input_layers - 1)))

        for shape in other_shapes:
            if not shape.is_compatible_with(other_shapes[0]):
                raise LayerConnectionError(
                    "Output layer that has to be merged expect to "
                    "have the same shapes. Shapes: {!r}"
                    "".format(tf_utils.shape_to_tuple(other_shapes)))
Пример #3
0
    def __reduce__(self):
        parameters = self.get_params(with_network=False)

        # We only need to know placeholders shape
        # in order to be able to reconstruct it
        parameters['target'] = tf_utils.shape_to_tuple(
            parameters['target'].shape)

        args = (self.network, parameters)
        return (self.__class__, args)
def check_if_networks_compatible(networks):
    input_shapes = []
    output_shapes = []

    for i, network in enumerate(networks):
        input_shapes.append(network.input_shape)
        output_shapes.append(network.output_shape)

    for shape in input_shapes:
        if not shape.is_compatible_with(input_shapes[0]):
            raise ValueError(
                "Networks have incompatible input shapes. Shapes: {}"
                "".format(tf_utils.shape_to_tuple(input_shapes)))

    for shape in output_shapes:
        if not shape.is_compatible_with(output_shapes[0]):
            raise ValueError(
                "Networks have incompatible output shapes. Shapes: {}"
                "".format(tf_utils.shape_to_tuple(output_shapes)))
Пример #5
0
    def get_output_shape(self, *input_shapes):
        input_shapes = [tf.TensorShape(shape) for shape in input_shapes]
        first_shape = input_shapes[0]

        if len(input_shapes) < 2:
            raise LayerConnectionError(
                "Layer `{}` expected multiple inputs. Input shapes: {}"
                "".format(self.name, tf_utils.shape_to_tuple(input_shapes)))

        if any(shape.ndims is None for shape in input_shapes):
            return tf.TensorShape(None)

        for shape in input_shapes:
            if not shape.is_compatible_with(first_shape):
                formatted_shapes = tf_utils.shape_to_tuple(input_shapes)
                raise LayerConnectionError(
                    "Input shapes to the `{}` layer have incompatible shapes. "
                    "Input shapes: {}, Layer: {}"
                    "".format(self.name, formatted_shapes, self))

        return first_shape
Пример #6
0
    def targets(self):
        placeholders = []

        for layer in self.output_layers:
            placeholder = tf.placeholder(
                tf.float32,
                shape=tf_utils.shape_to_tuple(layer.output_shape),
                name="placeholder/target/{}".format(layer.name),
            )
            placeholders.append(placeholder)

        return make_one_if_possible(placeholders)