Пример #1
0
 def test_getOutput(self):
     nn = neuralNet.NeuralNet(4, 4, 1, 6)
     numberOfWeights = (4 + 1) * 6 + (6 + 1) * 4
     weights = [1 for i in range(numberOfWeights)]
     nn.putWeights(weights)
     in_ = [1, 1, 1, 1]
     self.assertEqual(len(nn.getOutput(in_)), 4)
Пример #2
0
def main():
    start = time.clock()
    numInput, numOutput, numHiddenLayer, neuronPerLayer = 8, 1, 1, 2
    net = NN.NeuralNet(numInput, numOutput, numHiddenLayer, neuronPerLayer)
    # ga = GA.GenAlg()
    with open('ga_tftrain_sig.pickle', 'rb') as fp:
        print(fp.name)
        ga = pickle.load(fp)
    end = time.clock()
    runtime = end - start
    print("init net and GA: " + str(runtime))

    width = 8  # of board
    height = 8  # of board
    games = 100

    player1wins = 0
    for i in range(0, games):
        print("game num: " + str(i))
        start = time.clock()
        if play(player1, player2, width, height, ga, net) == 1:
            player1wins += 1
        end = time.clock()
        runtime = end - start
        print("runtime is " + str(runtime))
    # pickle.dump(ga, open('ga-data_step.pickle', 'wb'))

    return 'Player 1 won ' + str(player1wins) + ' out of ' + str(
        games) + ' games of size ' + str(height) + 'x' + str(
            width) + '. Total Game Time: ' + str(runtime) + ' sec'
Пример #3
0
def createNetwork(createFile, trainFromFile, nnParameters):
    ''' TRAIN DATA PROCESSING '''
    train_data_file_name = 'data/spotifyTrainData.csv'
    print "Train from file: ", trainFromFile, not trainFromFile
    if not trainFromFile:
        access_token = waitForAccessToken()
        sa.crawlSpotifyData(access_token)
        sa.labelSpotifyData(access_token)

    if createFile:
        createDataFileFromSpotify(train_data_file_name)
    else:
        if trainFromFile:
            train_data, train_label = getTrainDataFromFile(
                train_data_file_name)
        else:
            train_data, train_label = getTrainDataFromSpotify()
        ''' NEURAL NETWORK '''
        nn = NN.NeuralNet(numInputs=nnParameters[0],
                          layers=nnParameters[1],
                          numOutputs=nnParameters[2],
                          learningRate=nnParameters[3],
                          momentum=nnParameters[4])

        nn.printArchitecture()
        nn.train(train_data[:800],
                 train_label[:800],
                 num_epoch=nnParameters[5])
        nn.test(train_data[800:], train_label[800:])
Пример #4
0
 def test_putWeights(self):
     nn = neuralNet.NeuralNet(4, 4, 1, 6)
     numberOfWeights = (4 + 1) * 6 + (6 + 1) * 4
     weights = [1 for i in range(numberOfWeights)]
     nn.putWeights(weights)
     for neuron in nn.layers[0].neurons:
         self.assertEqual(len(neuron.weights), 5)
     for neuron in nn.layers[1].neurons:
         self.assertEqual(len(neuron.weights), 7)
Пример #5
0
def train1(numOfTraining):
    width = 8  # of board
    height = 8  # of board

    with open('true.pickle', 'rb') as fp:
        trueboard = list(pickle.load(fp))
    with open('false.pickle', 'rb') as fp:
        falseboard = list(pickle.load(fp))

    numInput, numOutput, numHiddenLayer, neuronPerLayer = 8, 1, 1, 8
    net = NN.NeuralNet(numInput, numOutput, numHiddenLayer, neuronPerLayer)
    ga = GA.GenAlg()
    # with open('ga-data_step.pickle', 'rb') as fp:
    #     print(fp.name)
    #     ga = pickle.load(fp)

    for j in range(numOfTraining):
        start = time.clock()
        print("iteration #: " + str(j))
        board = initial_board(width, height)

        winboard.detranslate(random.choice(falseboard), board)
        for genome in ga:
            net.putWeights(genome.weights)
            move1 = net.move(board, True)
            genome.fitness = ga.Fitness(0.0, move1[0])

        for genome in ga:
            print(genome.fitness, end=" ")
        print()
        ga.Epoch()

        winboard.detranslate(random.choice(trueboard), board)
        for genome in ga:
            net.putWeights(genome.weights)
            move1 = net.move(board, True)
            genome.fitness = ga.Fitness(1.0, move1[0])

        for genome in ga:
            print(genome.fitness, end=" ")
        print()
        ga.Epoch()

        end = time.clock()
        runtime = end - start
        print("runtime is " + str(runtime))

    pickle.dump(ga, open('ga_tftrain_sig.pickle', 'wb'))
Пример #6
0
 def __init__(self,population,numOfInputs,numOfOutputs,
         numOfHiddenLayers,neuronsPerHiddenLayer,
         crossoverRate,mutationRate,
         geneInit = chromosome.geneFunction):
     self.population = population
     self.generation = 1
     self.chromosomeLength = neuronsPerHiddenLayer*(numOfInputs+1)
     self.chromosomeLength += (neuronsPerHiddenLayer+1)*numOfOutputs
     self.chromosomeLength += sum([neuronsPerHiddenLayer*(neuronsPerHiddenLayer+1)
         for i in xrange(1,numOfHiddenLayers)])
     self.geneticAlg = geneAlg.GeneticAlgorithm(population,
             crossoverRate,mutationRate,self.chromosomeLength,geneInit)
     self.neuralNets = [neuralNet.NeuralNet(numOfInputs,numOfOutputs,
         numOfHiddenLayers,neuronsPerHiddenLayer) for i in xrange(population)]
     for nNet, chromo in zip(self.neuralNets,self.geneticAlg.chromosomes):
         nNet.putWeights(chromo.genes)
Пример #7
0
def main():

    with open('true.pickle', 'rb') as fp:
        trueboard = list(pickle.load(fp))
    with open('false.pickle', 'rb') as fp:
        falseboard = list(pickle.load(fp))

    print(len(trueboard), len(falseboard))
    nn = neuralNet.NeuralNet(0, 0, 0, 0)
    data = []
    for board in trueboard:
        temp_board = training.initial_board(8, 8)
        winboard.detranslate(board, temp_board)
        data.append(np.array(nn.translate(temp_board)))

    for board in falseboard:
        temp_board = training.initial_board(8, 8)
        winboard.detranslate(board, temp_board)
        data.append(np.array(nn.translate(temp_board)))

    print(len(data))
    data = np.array(data)
    k = 2
    km = Kmeans()
    clusters = km.assignment(data, k, trueboard, falseboard, nn)

    i = 0
    while not clusters.sholdStop():
        km.oneIter(data, clusters)
        print("iter num " + str(i))
        # if i%10 == 0:
        #     clusters.plot("C:/Users/Adiel/Desktop/figures/" + "fig_" + str(i) + ".png")
        i += 1

    pickle.dump(clusters, open("clusters.pickle", "wb"))
    for cluster in clusters:
        print(len(cluster))
Пример #8
0
import neuralNet as nn
import tester as test

# create a new neural net
input_nodes = 3
output_nodes = 3
hidden_nodes = 3

learning_rate = 0.3

net = nn.NeuralNet(input_nodes, output_nodes, hidden_nodes, learning_rate)
Пример #9
0
 def test_numberOfLayers(self):
     nn = neuralNet.NeuralNet(4, 4, 1, 6)
     self.assertEqual(len(nn.layers), 2)
     nn = neuralNet.NeuralNet(4, 4, 3, 6)
     self.assertEqual(len(nn.layers), 4)
Пример #10
0
 def test_NeuralNetCreate(self):
     nn = neuralNet.NeuralNet(4, 4, 1, 6)
Пример #11
0
 def test_numberOfNeurons(self):
     nn = neuralNet.NeuralNet(4, 4, 1, 6)
     self.assertEqual(len(nn.layers[0].neurons), 6)
     self.assertEqual(len(nn.layers[1].neurons), 4)
Пример #12
0
import numpy as np
import pickle
# from sklearn import svm
from sklearn import linear_model
import random
import neuralNet as NN
import training as trn
import winboard
with open('true.pickle', 'rb') as fp:
    trueboard = list(pickle.load(fp))
with open('false.pickle', 'rb') as fp:
    falseboard = list(pickle.load(fp))
nn = NN.NeuralNet(0, 0, 0, 0)
model = linear_model.Perceptron(penalty=None,
                                alpha=0.0001,
                                fit_intercept=True,
                                n_iter=5,
                                shuffle=True,
                                verbose=0,
                                eta0=1.0,
                                n_jobs=1,
                                random_state=0,
                                class_weight=None,
                                warm_start=False)
# with open('model.pickle', 'rb') as fp:
#     model = pickle.load(fp)

boards = []
tag = []
width, height = 8, 8
i = 0
Пример #13
0
#%%
import numpy as np 
import neuralNet as n
import matplotlib.pyplot as plt

X = np.array([[0,0,1,0,1,0,1],[0,1,1,0,0,0,0],[1,0,1,0,0,1,0],[1,1,1,1,1,1,1]])
y = np.array([[0],[1],[1],[0]])
nn = n.NeuralNet(7,1,8)
print(y)
nn.trainLoop(X,y,2000)
show=False
if(show):
    plt.plot(nn.plotPointsX[10:],nn.plotPointsY1[10:],c='red')
    plt.plot(nn.plotPointsX[10:],nn.plotPointsY2[10:],c='blue')
    for ind,o in enumerate(nn.output):
        print("the answer "+str(ind)+" is "+str(o[0]))
    plt.show()

nn.answer([0,1,1,0,0,0,0])
Пример #14
0
def train3(numOfTraining):
    width = 8  # of board
    height = 8  # of board

    with open('true.pickle', 'rb') as fp:
        trueboard = list(pickle.load(fp))
    with open('false.pickle', 'rb') as fp:
        falseboard = list(pickle.load(fp))
    # with open('net.pickle', 'rb') as fp:
    #     net = pickle.load(fp)

    numInput, numOutput, numHiddenLayer, neuronPerLayer = 8, 1, 1, 48
    net = NN.NeuralNet(numInput, numOutput, numHiddenLayer, neuronPerLayer)

    for j in range(numOfTraining):
        # start = time.clock()
        print("iteration #: " + str(j))
        trueboards = random.sample(trueboard, 400)
        falseboards = random.sample(falseboard, 100)

        for i in range(400):
            tb = initial_board(width, height)
            winboard.detranslate(trueboards[i], tb)
            net.train(tb, [1.0])
            if (i % 4):
                fb = initial_board(width, height)
                winboard.detranslate(falseboards[i % 100], fb)
                net.train(fb, [0.0])

        # end = time.clock()
        # runtime = end - start
        # print("runtime is " + str(runtime))

    # trueboards = random.sample(trueboard, 100)
    # falseboards = random.sample(falseboard, 100)
    avg_true = 0
    avg_false = 0
    avg_ans_false = 0
    avg_ans_true = 0

    trueboards = random.sample(trueboard, 100)
    falseboards = random.sample(falseboard, 100)
    for i in range(100):
        tb = initial_board(width, height)
        fb = initial_board(width, height)
        winboard.detranslate(trueboards[i], tb)
        winboard.detranslate(falseboards[i], fb)
        move1 = net.move(tb, True)
        move2 = net.move(fb, True)
        avg_ans_true += move1[0]
        avg_ans_false += move2[0]
        if math.fabs(move1[0] - 1.0) <= 0.1:
            avg_true += 1
        if math.fabs(move2[0] - 0.0) <= 0.1:
            avg_false += 1

    print("avg_true: " + str(avg_true / 100) + " avg_false: " +
          str(avg_false / 100))
    print("avg_true_ans: " + str(avg_ans_true / 100) + " avg_false_ans: " +
          str(avg_ans_false / 100))
    pickle.dump(net, open('net.pickle', 'wb'))
Пример #15
0
def train2(numOfTraining):
    width = 8  # of board
    height = 8  # of board

    with open('true.pickle', 'rb') as fp:
        trueboard = list(pickle.load(fp))
    with open('false.pickle', 'rb') as fp:
        falseboard = list(pickle.load(fp))

    numInput, numOutput, numHiddenLayer, neuronPerLayer = 8, 1, 1, 2
    net = NN.NeuralNet(numInput, numOutput, numHiddenLayer, neuronPerLayer)
    ga = GA.GenAlg()
    # elite = set()

    # with open('elite.pickle', 'rb') as fp:
    #     print(fp.name)
    #     print(sorted(pickle.load(fp).population, key=GA.Genome.getFitness)[-1:-101])
    #     ga.population = sorted(pickle.load(fp).population, key = GA.Genome.getFitness)[-1:-101]
    # random.shuffle(ga.population)
    # for genome in ga.population:
    #     genome.fitness = 0.0

    for j in range(numOfTraining):
        start = time.clock()
        print("iteration #: " + str(j))
        trueboards = random.sample(trueboard, 100)
        falseboards = random.sample(falseboard, 100)

        for i in range(100):
            tb = initial_board(width, height)
            fb = initial_board(width, height)
            winboard.detranslate(trueboards[i], tb)
            winboard.detranslate(falseboards[i], fb)
            for genome in ga:
                net.putWeights(genome.weights)
                move1 = net.move(tb, False)
                move2 = net.move(fb, False)
                if move1[0] == 1.0:
                    genome.fitness += 1
                if move2[0] == 0.0:
                    genome.fitness += 1

        ga.population.sort(key=GA.Genome.getFitness)
        ga.population.reverse()
        for genome in ga:
            print(genome.fitness, end=" ")
            if genome.fitness == 200:
                print("solution is genome " + str(ga.population.index(genome)))
                pickle.dump(ga, open('ga_data_tftrain_step.pickle', 'wb'))
                # ga.population = list(elite)
                # pickle.dump(ga, open('elite.pickle', 'wb'))
                exit()
            # elif genome.fitness > 100:
            # elite.add(genome.copy())
        # print()
        # print(len(elite))

        if j == numOfTraining - 1:
            pickle.dump(ga, open('ga_data_tftrain_step.pickle', 'wb'))
            # print(len(elite))
            # ga.population = list(elite)
            # pickle.dump(ga, open('elite.pickle', 'wb'))
            exit()

        ga.Epoch()

        end = time.clock()
        runtime = end - start
        print("runtime is " + str(runtime))