def get_attn(): return stax.GlobalSelfAttention( n_chan_out=width, n_chan_key=width, n_chan_val=int(np.round(float(width) / int(np.sqrt(width)))), n_heads=int(np.sqrt(width)), ) if proj == 'avg' else stax.Identity()
def _get_net(W_std, b_std, filter_shape, is_conv, use_pooling, is_res, padding, phi, strides, width, is_ntk, proj_into_2d, layer_norm, parameterization, use_dropout): fc = partial(stax.Dense, W_std=W_std, b_std=b_std, parameterization=parameterization) conv = partial(stax.Conv, filter_shape=filter_shape, strides=strides, padding=padding, W_std=W_std, b_std=b_std, parameterization=parameterization) affine = conv(width) if is_conv else fc(width) rate = np.onp.random.uniform(0.5, 0.9) dropout = stax.Dropout(rate, mode='train') ave_pool = stax.AvgPool((2, 3), None, 'SAME' if padding == 'SAME' else 'CIRCULAR') ave_pool_or_identity = ave_pool if use_pooling else stax.Identity() dropout_or_identity = dropout if use_dropout else stax.Identity() layer_norm_or_identity = (stax.Identity() if layer_norm is None else stax.LayerNorm(axis=layer_norm)) res_unit = stax.serial(ave_pool_or_identity, phi, dropout_or_identity, affine) if is_res: block = stax.serial(affine, stax.FanOut(2), stax.parallel(stax.Identity(), res_unit), stax.FanInSum(), layer_norm_or_identity) else: block = stax.serial(affine, res_unit, layer_norm_or_identity) if proj_into_2d == 'FLAT': proj_layer = stax.Flatten() elif proj_into_2d == 'POOL': proj_layer = stax.GlobalAvgPool() elif proj_into_2d.startswith('ATTN'): n_heads = int(np.sqrt(width)) n_chan_val = int(np.round(float(width) / n_heads)) fixed = proj_into_2d == 'ATTN_FIXED' proj_layer = stax.serial( stax.GlobalSelfAttention(width, n_chan_key=width, n_chan_val=n_chan_val, n_heads=n_heads, fixed=fixed, W_key_std=W_std, W_value_std=W_std, W_query_std=W_std, W_out_std=1.0, b_std=b_std), stax.Flatten()) else: raise ValueError(proj_into_2d) readout = stax.serial(proj_layer, fc(1 if is_ntk else width)) return stax.serial(block, readout)
def _get_net(W_std, b_std, filter_shape, is_conv, use_pooling, is_res, padding, phi, strides, width, is_ntk, proj_into_2d): fc = partial(stax.Dense, W_std=W_std, b_std=b_std) conv = partial( stax.Conv, filter_shape=filter_shape, strides=strides, padding=padding, W_std=W_std, b_std=b_std) affine = conv(width) if is_conv else fc(width) res_unit = stax.serial((stax.AvgPool( (2, 3), None, 'SAME' if padding == 'SAME' else 'CIRCULAR') if use_pooling else stax.Identity()), phi, affine) if is_res: block = stax.serial(affine, stax.FanOut(2), stax.parallel(stax.Identity(), res_unit), stax.FanInSum()) else: block = stax.serial(affine, res_unit) if proj_into_2d == 'FLAT': proj_layer = stax.Flatten() elif proj_into_2d == 'POOL': proj_layer = stax.GlobalAvgPool() elif proj_into_2d.startswith('ATTN'): n_heads = int(np.sqrt(width)) n_chan_val = int(np.round(float(width) / n_heads)) fixed = proj_into_2d == 'ATTN_FIXED' proj_layer = stax.serial( stax.GlobalSelfAttention( width, n_chan_key=width, n_chan_val=n_chan_val, n_heads=n_heads, fixed=fixed, W_key_std=W_std, W_value_std=W_std, W_query_std=W_std, W_out_std=1.0, b_std=b_std), stax.Flatten()) else: raise ValueError(proj_into_2d) readout = stax.serial(proj_layer, fc(1 if is_ntk else width)) return stax.serial(block, readout)
def _get_net(W_std, b_std, filter_shape, is_conv, use_pooling, is_res, padding, phi, strides, width, is_ntk, proj_into_2d, pool_type, layer_norm, parameterization, s, use_dropout): if is_conv: # Select a random filter order. default_filter_spec = 'HW' filter_specs = [''.join(p) for p in itertools.permutations('HWIO')] filter_spec = prandom.choice(filter_specs) filter_shape = tuple(filter_shape[default_filter_spec.index(c)] for c in filter_spec if c in default_filter_spec) strides = tuple(strides[default_filter_spec.index(c)] for c in filter_spec if c in default_filter_spec) # Select the activation order. default_spec = 'NHWC' if default_backend() == 'tpu': # Keep batch dimension leading for TPU for batching to work. specs = ['N' + ''.join(p) for p in itertools.permutations('CHW')] else: specs = [''.join(p) for p in itertools.permutations('NCHW')] spec = prandom.choice(specs) input_shape = tuple(INPUT_SHAPE[default_spec.index(c)] for c in spec) else: input_shape = (INPUT_SHAPE[0], onp.prod(INPUT_SHAPE[1:])) if default_backend() == 'tpu': spec = 'NC' else: spec = prandom.choice(['NC', 'CN']) if spec.index('N') == 1: input_shape = input_shape[::-1] filter_spec = None dimension_numbers = (spec, filter_spec, spec) batch_axis, channel_axis = spec.index('N'), spec.index('C') spec_fc = ''.join(c for c in spec if c in ('N', 'C')) batch_axis_fc, channel_axis_fc = spec_fc.index('N'), spec_fc.index('C') if not is_conv: batch_axis = batch_axis_fc channel_axis = channel_axis_fc if layer_norm: layer_norm = tuple(spec.index(c) for c in layer_norm) def fc(out_dim, s): return stax.Dense( out_dim=out_dim, W_std=W_std, b_std=b_std, parameterization=parameterization, s=s, batch_axis=batch_axis_fc, channel_axis=channel_axis_fc ) def conv(out_chan, s): return stax.Conv( out_chan=out_chan, filter_shape=filter_shape, strides=strides, padding=padding, W_std=W_std, b_std=b_std, dimension_numbers=dimension_numbers, parameterization=parameterization, s=s ) affine = conv(width, (s, s)) if is_conv else fc(width, (s, s)) affine_bottom = conv(width, (1, s)) if is_conv else fc(width, (1, s)) rate = onp.random.uniform(0.5, 0.9) dropout = stax.Dropout(rate, mode='train') if pool_type == 'AVG': pool_fn = stax.AvgPool global_pool_fn = stax.GlobalAvgPool elif pool_type == 'SUM': pool_fn = stax.SumPool global_pool_fn = stax.GlobalSumPool else: raise ValueError(pool_type) if use_pooling: pool_or_identity = pool_fn((2, 3), None, 'SAME' if padding == 'SAME' else 'CIRCULAR', batch_axis=batch_axis, channel_axis=channel_axis) else: pool_or_identity = stax.Identity() dropout_or_identity = dropout if use_dropout else stax.Identity() layer_norm_or_identity = (stax.Identity() if layer_norm is None else stax.LayerNorm(axis=layer_norm, batch_axis=batch_axis, channel_axis=channel_axis)) res_unit = stax.serial(dropout_or_identity, affine, pool_or_identity) if is_res: block = stax.serial( affine_bottom, stax.FanOut(2), stax.parallel(stax.Identity(), res_unit), stax.FanInSum(), layer_norm_or_identity, phi) else: block = stax.serial( affine_bottom, res_unit, layer_norm_or_identity, phi) if proj_into_2d == 'FLAT': proj_layer = stax.Flatten(batch_axis, batch_axis_fc) elif proj_into_2d == 'POOL': proj_layer = global_pool_fn(batch_axis, channel_axis) elif proj_into_2d.startswith('ATTN'): n_heads = int(np.sqrt(width)) n_chan_val = int(np.round(float(width) / n_heads)) proj_layer = stax.serial( stax.GlobalSelfAttention( n_chan_out=width, n_chan_key=width, n_chan_val=n_chan_val, n_heads=n_heads, linear_scaling=True, W_key_std=W_std, W_value_std=W_std, W_query_std=W_std, W_out_std=1.0, b_std=b_std, batch_axis=batch_axis, channel_axis=channel_axis), stax.Flatten(batch_axis, batch_axis_fc)) else: raise ValueError(proj_into_2d) readout = stax.serial(proj_layer, fc(1 if is_ntk else width, (s, 1 if is_ntk else s))) device_count = -1 if spec.index('N') == 0 else 0 net = stax.serial(block, readout) return net, input_shape, device_count, channel_axis_fc
def main(*args, use_dummy_data: bool = False, **kwargs) -> None: # Mask all padding with this value. mask_constant = 100. if use_dummy_data: x_train, y_train, x_test, y_test = _get_dummy_data(mask_constant) else: # Build data pipelines. print('Loading IMDb data.') x_train, y_train, x_test, y_test = datasets.get_dataset( name='imdb_reviews', n_train=FLAGS.n_train, n_test=FLAGS.n_test, do_flatten_and_normalize=False, data_dir=FLAGS.imdb_path, input_key='text') # Embed words and pad / truncate sentences to a fixed size. x_train, x_test = datasets.embed_glove( xs=[x_train, x_test], glove_path=FLAGS.glove_path, max_sentence_length=FLAGS.max_sentence_length, mask_constant=mask_constant) # Build the infinite network. # Not using the finite model, hence width is set to 1 everywhere. _, _, kernel_fn = stax.serial( stax.Conv(out_chan=1, filter_shape=(9, ), strides=(1, ), padding='VALID'), stax.Relu(), stax.GlobalSelfAttention(n_chan_out=1, n_chan_key=1, n_chan_val=1, pos_emb_type='SUM', W_pos_emb_std=1., pos_emb_decay_fn=lambda d: 1 / (1 + d**2), n_heads=1), stax.Relu(), stax.GlobalAvgPool(), stax.Dense(out_dim=1)) # Optionally, compute the kernel in batches, in parallel. kernel_fn = nt.batch(kernel_fn, device_count=-1, batch_size=FLAGS.batch_size) start = time.time() # Bayesian and infinite-time gradient descent inference with infinite network. predict = nt.predict.gradient_descent_mse_ensemble( kernel_fn=kernel_fn, x_train=x_train, y_train=y_train, diag_reg=1e-6, mask_constant=mask_constant) fx_test_nngp, fx_test_ntk = predict(x_test=x_test, get=('nngp', 'ntk')) fx_test_nngp.block_until_ready() fx_test_ntk.block_until_ready() duration = time.time() - start print(f'Kernel construction and inference done in {duration} seconds.') # Print out accuracy and loss for infinite network predictions. loss = lambda fx, y_hat: 0.5 * np.mean((fx - y_hat)**2) util.print_summary('NNGP test', y_test, fx_test_nngp, None, loss) util.print_summary('NTK test', y_test, fx_test_ntk, None, loss)
def _get_net(W_std, b_std, filter_shape, is_conv, use_pooling, is_res, padding, phi, strides, width, is_ntk, proj_into_2d, pool_type, layer_norm, parameterization, use_dropout): if is_conv: # Select a random dimension order. default_spec = 'NHWC' if xla_bridge.get_backend().platform == 'tpu': # Keep batch dimension leading for TPU for batching to work. specs = ['NHWC', 'NHCW', 'NCHW'] else: specs = ['NHWC', 'NHCW', 'NCHW', 'CHWN', 'CHNW', 'CNHW'] spec = prandom.choice(specs) input_shape = tuple(INPUT_SHAPE[default_spec.index(c)] for c in spec) if layer_norm: layer_norm = tuple(spec.index(c) for c in layer_norm) else: # Only `NC` dimension order is supported and is enforced by layers. spec = None input_shape = INPUT_SHAPE if layer_norm: layer_norm = prandom.choice([(1,), (-1,)]) dimension_numbers = (spec, 'HWIO', spec) fc = partial( stax.Dense, W_std=W_std, b_std=b_std, parameterization=parameterization) def conv(out_chan): return stax.GeneralConv( dimension_numbers=dimension_numbers, out_chan=out_chan, filter_shape=filter_shape, strides=strides, padding=padding, W_std=W_std, b_std=b_std, parameterization=parameterization ) affine = conv(width) if is_conv else fc(width) spec = dimension_numbers[-1] rate = np.onp.random.uniform(0.5, 0.9) dropout = stax.Dropout(rate, mode='train') if pool_type == 'AVG': pool_fn = stax.AvgPool globalPool_fn = stax.GlobalAvgPool elif pool_type == 'SUM': pool_fn = stax.SumPool globalPool_fn = stax.GlobalSumPool if use_pooling: pool_or_identity = pool_fn((2, 3), None, 'SAME' if padding == 'SAME' else 'CIRCULAR', spec=spec) else: pool_or_identity = stax.Identity() dropout_or_identity = dropout if use_dropout else stax.Identity() layer_norm_or_identity = (stax.Identity() if layer_norm is None else stax.LayerNorm(axis=layer_norm, spec=spec)) res_unit = stax.serial(pool_or_identity, phi, dropout_or_identity, affine) if is_res: block = stax.serial( affine, stax.FanOut(2), stax.parallel(stax.Identity(), res_unit), stax.FanInSum(), layer_norm_or_identity) else: block = stax.serial( affine, res_unit, layer_norm_or_identity) if proj_into_2d == 'FLAT': proj_layer = stax.Flatten(spec=spec) elif proj_into_2d == 'POOL': proj_layer = globalPool_fn(spec=spec) elif proj_into_2d.startswith('ATTN'): n_heads = int(np.sqrt(width)) n_chan_val = int(np.round(float(width) / n_heads)) fixed = proj_into_2d == 'ATTN_FIXED' proj_layer = stax.serial( stax.GlobalSelfAttention( n_chan_out=width, n_chan_key=width, n_chan_val=n_chan_val, n_heads=n_heads, fixed=fixed, W_key_std=W_std, W_value_std=W_std, W_query_std=W_std, W_out_std=1.0, b_std=b_std, spec=spec), stax.Flatten(spec=spec)) else: raise ValueError(proj_into_2d) readout = stax.serial(proj_layer, fc(1 if is_ntk else width)) return stax.serial(block, readout), input_shape