def train_unsupervised_hierarchy(X1, X2, n_epochs=30):
    g1 = gwr_h_unimodal(n_layers=2, window_size=[3, 3], gwr_pars=pars)
    g2 = gwr_h_unimodal(n_layers=2, window_size=[3, 3], gwr_pars=pars)
    g3 = gwr(**pars)

    X1_ = g1.train(X1, n_epochs=n_epochs)
    X2_ = g2.train(X2, n_epochs=n_epochs)
    X = np.hstack((X1_, X2_))

    g3.train(X, n_epochs=n_epochs)
    return g1, g2, g3
Пример #2
0
    def __init__(self, n_layers = 2, window_size = [3, 1], lab_ratio =1 / 2,
                 gwr_pars = []):
        '''
        NOTE: The data X is used in training without window for layer 1,
        then window_size[0] is used to get the trajectory from the first
        to the second layer. If you have only two layers, window_size[1]
        is the output trajectory already windowed.
        '''

        self.n_layers    = n_layers
        self.window_size = window_size
        self.lab_ratio   = lab_ratio

        if isinstance(gwr_pars, list):
            self.H = []
            for i in range(self.n_layers):
                try:
                    par = gwr_pars[i]
                    self.H.append(gwr(**par))
                except IndexError:
                    self.H.append(gwr())
        elif isinstance(gwr_pars, dict):
            self.H = [gwr(**gwr_pars) for _ in range(self.n_layers)]
Пример #3
0
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt

from neuralgas.oss_gwr import gwr

gwr = gwr(tau_b=0.3, tau_n=0.1, kappa=1.05)
gwr.G = nx.Graph()
gwr.G.add_node(0, attr_dict={'pos': np.array([1, 1]), 'fir': 1})
gwr.G.add_node(1, attr_dict={'pos': np.array([1, 1]), 'fir': 1})
gwr.G.add_edge(0, 1)
fir, fir_n = [1], [1]

for i in range(10):
    gwr._update_firing(0)
    fir.append(gwr.G.node[0]['fir'])
    fir_n.append(gwr.G.node[1]['fir'])

f, ax = plt.subplots(1, 1)
ax.set_title('Synapse habituation')
ax.plot(fir, label='Best matching synapse')
ax.plot(fir_n, label='Neighbor synapse')
ax.legend()
import numpy as np
import sklearn.datasets
import matplotlib.pyplot as plt

from neuralgas.oss_gwr import gwr
'''
Growing two 2D neural gases to learn the distribution of Gaussian data
with different standard deviations. The visualization shows only the positions
of the neurons (and not the connections).
'''

iris = sklearn.datasets.load_iris()
X1 = np.random.normal(loc=2, scale=1.0, size=[1000, 2])
X2 = np.random.normal(loc=2, scale=2, size=[1000, 2])

g1 = gwr(act_thr=0.75, random_state=None, max_size=30)
g1.train(X1, n_epochs=3)
Xg1 = g1.get_positions()

g2 = gwr(act_thr=0.75, random_state=None, max_size=30)
g2.train(X2, n_epochs=3)
Xg2 = g2.get_positions()

marks = 8
f, ax = plt.subplots(2, 2)
ax[0, 0].scatter(X1[:, 0], X1[:, 1], s=marks)
ax[1, 0].scatter(X2[:, 0], X2[:, 1], s=marks)
ymin, ymax = ax[1, 0].get_ylim()
xmin, xmax = ax[1, 0].get_xlim()
ax[0, 1].scatter(Xg1[:, 0], Xg1[:, 1], s=marks)
from __future__ import division

import sklearn.datasets
import matplotlib.pyplot as plt

from neuralgas.oss_gwr import gwr

iris = sklearn.datasets.load_iris()
X = iris.data
y = iris.target

g1 = gwr(act_thr=0.75, random_state=12345)
g1.train(X[:, :2], n_epochs=1)
Xg1 = g1.get_positions()
g1.train(X[:, :2], n_epochs=19, warm_start=True)
Xg1_ = g1.get_positions()

g2 = gwr(act_thr=0.75, random_state=1234)
g2.train(X[:, 2:], n_epochs=1)
Xg2 = g2.get_positions()
g2.train(X[:, 2:], n_epochs=19, warm_start=True)
Xg2_ = g2.get_positions()

marks = 15
f, ax = plt.subplots(2, 3)
ax[0, 0].scatter(X[:, 0], X[:, 1], s=marks)
ymin, ymax = ax[0, 0].get_ylim()
xmin, xmax = ax[0, 0].get_xlim()
ax[0, 1].scatter(Xg1[:, 0], Xg1[:, 1], s=marks)
ax[0, 2].scatter(Xg1_[:, 0], Xg1_[:, 1], s=marks)
for i in range(1, 3):
Пример #6
0
X = iris.data
X1 = X[:, :2]
X2 = X[:, 2:]
y = iris.target

g1 = gwr_h_unimodal(n_layers=2,
                    window_size=[1, 2],
                    gwr_pars=[{
                        'act_thr': 0.7
                    }, {
                        'act_thr': 0.7
                    }])

g2 = gwr_h_unimodal(n_layers=2,
                    window_size=[1, 2],
                    gwr_pars=[{
                        'act_thr': 0.7
                    }, {
                        'act_thr': 0.7
                    }])

g3 = gwr()

XX1 = g1.train(X1)
XX2 = g2.train(X2)
X3 = np.hstack((XX1, XX2))
g3.train(X3)
Xf = _propagate_trajectories(X3, network=g3, ws=2)

# then you can take a oss_gwr