def test_epoch(self, loader_src, loader_tar_ul, loader_tar_l, epoch, writer=None, write_images=False, device=0): """ Trains the network for one epoch :param loader_src: source dataloader (labeled) :param loader_tar_ul: target dataloader (unlabeled) :param loader_tar_l: target dataloader (labeled) :param epoch: current epoch :param writer: summary writer :param write_images: frequency of writing images :param device: GPU device where the computations should occur :return: average training loss over the epoch """ # perform training on GPU/CPU module_to_device(self, device) self.eval() # keep track of the average loss during the epoch loss_seg_src_cum = 0.0 loss_seg_tar_cum = 0.0 total_loss_cum = 0.0 cnt = 0 # zip dataloaders if loader_tar_l is None: dl = zip(loader_src) else: dl = zip(loader_src, loader_tar_l) # start epoch y_preds = [] ys = [] time_start = datetime.datetime.now() for i, data in enumerate(dl): # transfer to suitable device x_src, y_src = tensor_to_device(data[0], device) x_tar_l, y_tar_l = tensor_to_device(data[1], device) x_src = x_src.float() x_tar_l = x_tar_l.float() y_src = y_src.long() y_tar_l = y_tar_l.long() # forward prop and compute loss y_src_pred = self(x_src) y_tar_l_pred = self(x_tar_l) loss_seg_src = self.seg_loss(y_src_pred, y_src[:, 0, ...]) loss_seg_tar = self.seg_loss(y_tar_l_pred, y_tar_l[:, 0, ...]) total_loss = loss_seg_src + loss_seg_tar loss_seg_src_cum += loss_seg_src.data.cpu().numpy() loss_seg_tar_cum += loss_seg_tar.data.cpu().numpy() total_loss_cum += total_loss.data.cpu().numpy() cnt += 1 for b in range(y_tar_l_pred.size(0)): y_preds.append( F.softmax(y_tar_l_pred, dim=1)[b, ...].view(y_tar_l_pred.size(1), -1).data.cpu().numpy()) ys.append(y_tar_l[b, 0, ...].flatten().cpu().numpy()) # keep track of time runtime = datetime.datetime.now() - time_start seconds = runtime.total_seconds() hours = seconds // 3600 minutes = (seconds - hours * 3600) // 60 seconds = seconds - hours * 3600 - minutes * 60 print_frm( 'Epoch %5d - Runtime for testing: %d hours, %d minutes, %f seconds' % (epoch, hours, minutes, seconds)) # prep for metric computation y_preds = np.concatenate(y_preds, axis=1) ys = np.concatenate(ys) js = np.asarray([ jaccard((ys == i).astype(int), y_preds[i, :]) for i in range(len(self.coi)) ]) ams = np.asarray([ accuracy_metrics((ys == i).astype(int), y_preds[i, :]) for i in range(len(self.coi)) ]) # don't forget to compute the average and print it loss_seg_src_avg = loss_seg_src_cum / cnt loss_seg_tar_avg = loss_seg_tar_cum / cnt total_loss_avg = total_loss_cum / cnt print( '[%s] Testing Epoch %4d - Loss seg src: %.6f - Loss seg tar: %.6f - Loss: %.6f' % (datetime.datetime.now(), epoch, loss_seg_src_avg, loss_seg_tar_avg, total_loss_avg)) # log everything if writer is not None: # always log scalars log_scalars([ loss_seg_src_avg, loss_seg_tar_avg, total_loss_avg, np.mean(js, axis=0), *(np.mean(ams, axis=0)) ], [ 'test/' + s for s in [ 'loss-seg-src', 'loss-seg-tar', 'total-loss', 'jaccard', 'accuracy', 'balanced-accuracy', 'precision', 'recall', 'f-score' ] ], writer, epoch=epoch) # log images if necessary if write_images: y_src_pred = F.softmax(y_src_pred, dim=1)[:, 1:2, :, :].data y_tar_l_pred = F.softmax(y_tar_l_pred, dim=1)[:, 1:2, :, :].data log_images_2d([ x_src.data, y_src.data, y_src_pred, x_tar_l.data, y_tar_l, y_tar_l_pred ], [ 'test/' + s for s in [ 'src/x', 'src/y', 'src/y-pred', 'tar/x-l', 'tar/y-l', 'tar/y-l-pred' ] ], writer, epoch=epoch) return total_loss_avg
def test_epoch(self, loader_src, loader_tar_ul, loader_tar_l, epoch, writer=None, write_images=False, device=0): """ Trains the network for one epoch :param loader_src: source dataloader (labeled) :param loader_tar_ul: target dataloader (unlabeled) :param loader_tar_l: target dataloader (labeled) :param epoch: current epoch :param writer: summary writer :param write_images: frequency of writing images :param device: GPU device where the computations should occur :return: average training loss over the epoch """ # perform training on GPU/CPU module_to_device(self, device) self.eval() # keep track of the average loss during the epoch loss_seg_src_cum = 0.0 loss_seg_tar_cum = 0.0 loss_rec_src_cum = 0.0 loss_rec_tar_cum = 0.0 loss_dc_x_cum = 0.0 loss_dc_y_cum = 0.0 total_loss_cum = 0.0 cnt = 0 # zip dataloaders dl = zip(loader_src, loader_tar_ul, loader_tar_l) # start epoch y_preds = [] ys = [] time_start = datetime.datetime.now() for i, data in enumerate(dl): # transfer to suitable device x_src, y_src = tensor_to_device(data[0], device) x_tar_ul = tensor_to_device(data[1], device) x_tar_l, y_tar_l = tensor_to_device(data[2], device) x_src = x_src.float() x_tar_ul = x_tar_ul.float() x_tar_l = x_tar_l.float() y_src = y_src.long() y_tar_l = y_tar_l.long() # get domain labels for domain confusion dom_labels_x = tensor_to_device( torch.zeros((x_src.size(0) + x_tar_ul.size(0))), device).long() dom_labels_x[x_src.size(0):] = 1 dom_labels_y = tensor_to_device( torch.zeros((x_src.size(0) + x_tar_ul.size(0))), device).long() dom_labels_y[x_src.size(0):] = 1 # check train mode and compute loss loss_seg_src = torch.Tensor([0]) loss_seg_tar = torch.Tensor([0]) loss_rec_src = torch.Tensor([0]) loss_rec_tar = torch.Tensor([0]) loss_dc_x = torch.Tensor([0]) loss_dc_y = torch.Tensor([0]) if self.train_mode == RECONSTRUCTION: x_src_rec, x_src_rec_dom = self.forward_rec(x_src) x_tar_ul_rec, x_tar_ul_rec_dom = self.forward_rec(x_tar_ul) loss_rec_src = self.rec_loss(x_src_rec, x_src) loss_rec_tar = self.rec_loss(x_tar_ul, x_tar_ul_rec) loss_dc_x = self.dc_loss( torch.cat((x_src_rec_dom, x_tar_ul_rec_dom), dim=0), dom_labels_x) total_loss = loss_rec_src + loss_rec_tar + self.lambda_dc * loss_dc_x elif self.train_mode == SEGMENTATION: # switch between reconstructed and original inputs if np.random.rand() < self.p: y_src_pred, y_src_pred_dom = self.forward_seg(x_src) else: x_src_rec, _ = self.forward_rec(x_src) y_src_pred, y_src_pred_dom = self.forward_seg(x_src_rec) dom_labels_y[:x_src.size(0)] = 1 if np.random.rand() < self.p: y_tar_ul_pred, y_tar_ul_pred_dom = self.forward_seg( x_tar_ul) else: x_tar_ul_rec, _ = self.forward_rec(x_tar_ul) y_tar_ul_pred, y_tar_ul_pred_dom = self.forward_seg( x_tar_ul_rec) dom_labels_y[x_src.size(0):] = 1 loss_seg_src = self.seg_loss(y_src_pred, y_src[:, 0, ...]) loss_dc_y = self.dc_loss( torch.cat((y_src_pred_dom, y_tar_ul_pred_dom), dim=0), dom_labels_y) total_loss = loss_seg_src + self.lambda_dc * loss_dc_y y_tar_l_pred, _ = self.forward_seg(x_tar_l) loss_seg_tar = self.seg_loss(y_tar_l_pred, y_tar_l[:, 0, ...]) total_loss = total_loss + loss_seg_tar else: x_src_rec, x_src_rec_dom = self.forward_rec(x_src) if np.random.rand() < self.p: y_src_pred, y_src_pred_dom = self.forward_seg(x_src) else: y_src_pred, y_src_pred_dom = self.forward_seg(x_src_rec) dom_labels_y[:x_src.size(0)] = 1 x_tar_ul_rec, x_tar_ul_rec_dom = self.forward_rec(x_tar_ul) if np.random.rand() < self.p: y_tar_ul_pred, y_tar_ul_pred_dom = self.forward_seg( x_tar_ul) else: y_tar_ul_pred, y_tar_ul_pred_dom = self.forward_seg( x_tar_ul_rec) dom_labels_y[x_src.size(0):] = 1 loss_rec_src = self.rec_loss(x_src_rec, x_src) loss_rec_tar = self.rec_loss(x_tar_ul, x_tar_ul_rec) loss_seg_src = self.seg_loss(y_src_pred, y_src[:, 0, ...]) loss_dc_x = self.dc_loss( torch.cat((x_src_rec_dom, x_tar_ul_rec_dom), dim=0), dom_labels_x) loss_dc_y = self.dc_loss( torch.cat((y_src_pred_dom, y_tar_ul_pred_dom), dim=0), dom_labels_y) total_loss = loss_seg_src + self.lambda_rec * (loss_rec_src + loss_rec_tar) + \ self.lambda_dc * (loss_dc_x + loss_dc_y) _, y_tar_l_pred, _, y_tar_l_pred_dom = self(x_tar_l) loss_seg_tar = self.seg_loss(y_tar_l_pred, y_tar_l[:, 0, ...]) total_loss = total_loss + loss_seg_tar loss_seg_src_cum += loss_seg_src.data.cpu().numpy() loss_seg_tar_cum += loss_seg_tar.data.cpu().numpy() loss_rec_src_cum += loss_rec_src.data.cpu().numpy() loss_rec_tar_cum += loss_rec_tar.data.cpu().numpy() loss_dc_x_cum += loss_dc_x.data.cpu().numpy() loss_dc_y_cum += loss_dc_y.data.cpu().numpy() total_loss_cum += total_loss.data.cpu().numpy() cnt += 1 if self.train_mode == SEGMENTATION or self.train_mode == JOINT: for b in range(y_tar_l_pred.size(0)): y_preds.append( F.softmax(y_tar_l_pred, dim=1)[b, ...].view(y_tar_l_pred.size(1), -1).data.cpu().numpy()) ys.append(y_tar_l[b, 0, ...].flatten().cpu().numpy()) # keep track of time runtime = datetime.datetime.now() - time_start seconds = runtime.total_seconds() hours = seconds // 3600 minutes = (seconds - hours * 3600) // 60 seconds = seconds - hours * 3600 - minutes * 60 print_frm( 'Epoch %5d - Runtime for testing: %d hours, %d minutes, %f seconds' % (epoch, hours, minutes, seconds)) # prep for metric computation if self.train_mode == SEGMENTATION or self.train_mode == JOINT: y_preds = np.concatenate(y_preds, axis=1) ys = np.concatenate(ys) js = np.asarray([ jaccard((ys == i).astype(int), y_preds[i, :]) for i in range(len(self.coi)) ]) ams = np.asarray([ accuracy_metrics((ys == i).astype(int), y_preds[i, :]) for i in range(len(self.coi)) ]) # don't forget to compute the average and print it loss_seg_src_avg = loss_seg_src_cum / cnt loss_seg_tar_avg = loss_seg_tar_cum / cnt loss_rec_src_avg = loss_rec_src_cum / cnt loss_rec_tar_avg = loss_rec_tar_cum / cnt loss_dc_x_avg = loss_dc_x_cum / cnt loss_dc_y_avg = loss_dc_y_cum / cnt total_loss_avg = total_loss_cum / cnt print( '[%s] Testing Epoch %5d - Loss seg src: %.6f - Loss seg tar: %.6f - Loss rec src: %.6f - Loss rec tar: %.6f - Loss DCX: %.6f - Loss DCY: %.6f - Loss: %.6f' % (datetime.datetime.now(), epoch, loss_seg_src_avg, loss_seg_tar_avg, loss_rec_src_avg, loss_rec_tar_avg, loss_dc_x_avg, loss_dc_y_avg, total_loss_avg)) # log everything if writer is not None: # always log scalars if self.train_mode == RECONSTRUCTION: log_scalars( [loss_rec_src_avg, loss_rec_tar_avg, loss_dc_x_avg], [ 'test/' + s for s in ['loss-rec-src', 'loss-rec-tar', 'loss-dc-x'] ], writer, epoch=epoch) elif self.train_mode == SEGMENTATION: log_scalars([ loss_seg_src_avg, loss_seg_tar_avg, loss_dc_y_avg, np.mean(js, axis=0), *(np.mean(ams, axis=0)) ], [ 'test/' + s for s in [ 'loss-seg-src', 'loss-seg-tar', 'loss-dc-y', 'jaccard', 'accuracy', 'balanced-accuracy', 'precision', 'recall', 'f-score' ] ], writer, epoch=epoch) else: log_scalars([ loss_seg_src_avg, loss_seg_tar_avg, loss_rec_src_avg, loss_rec_tar_avg, loss_dc_x_avg, loss_dc_y_avg, np.mean(js, axis=0), *(np.mean(ams, axis=0)) ], [ 'test/' + s for s in [ 'loss-seg-src', 'loss-seg-tar', 'loss-rec-src', 'loss-rec-tar', 'loss-dc-x', 'loss-dc-y', 'jaccard', 'accuracy', 'balanced-accuracy', 'precision', 'recall', 'f-score' ] ], writer, epoch=epoch) log_scalars([total_loss_avg], ['test/' + s for s in ['total-loss']], writer, epoch=epoch) # log images if necessary if write_images: log_images_2d([x_src.data], ['test/' + s for s in ['src/x']], writer, epoch=epoch) if self.train_mode == RECONSTRUCTION: log_images_2d( [x_src_rec.data, x_tar_ul.data, x_tar_ul_rec.data], [ 'test/' + s for s in ['src/x-rec', 'tar/x-ul', 'tar/x-ul-rec'] ], writer, epoch=epoch) elif self.train_mode == SEGMENTATION: y_src_pred = F.softmax(y_src_pred, dim=1)[:, 1:2, :, :].data log_images_2d( [y_src.data, y_src_pred], ['test/' + s for s in ['src/y', 'src/y-pred']], writer, epoch=epoch) if loader_tar_l is not None: y_tar_l_pred = F.softmax(y_tar_l_pred, dim=1)[:, 1:2, :, :].data log_images_2d([x_tar_l.data, y_tar_l, y_tar_l_pred], [ 'test/' + s for s in ['tar/x-l', 'tar/y-l', 'tar/y-l-pred'] ], writer, epoch=epoch) else: y_src_pred = F.softmax(y_src_pred, dim=1)[:, 1:2, :, :].data log_images_2d([ x_src_rec.data, y_src.data, y_src_pred, x_tar_ul.data, x_tar_ul_rec.data ], [ 'test/' + s for s in [ 'src/x-rec', 'src/y', 'src/y-pred', 'tar/x-ul', 'tar/x-ul-rec' ] ], writer, epoch=epoch) if loader_tar_l is not None: y_tar_l_pred = F.softmax(y_tar_l_pred, dim=1)[:, 1:2, :, :].data log_images_2d([x_tar_l.data, y_tar_l, y_tar_l_pred], [ 'test/' + s for s in ['tar/x-l', 'tar/y-l', 'tar/y-l-pred'] ], writer, epoch=epoch) return total_loss_avg
def test_epoch(self, loader_src, loader_tar, loss_seg_fn, loss_rec_fn, epoch, writer=None, write_images=False, device=0): """ Tests the network for one epoch :param loader_src: source dataloader (should be labeled) :param loader_tar: target dataloader (should be labeled) :param loss_seg_fn: segmentation loss function :param loss_rec_fn: reconstruction loss function :param epoch: current epoch :param writer: summary writer :param write_images: frequency of writing images :param device: GPU device where the computations should occur :return: average training loss over the epoch """ # perform training on GPU/CPU module_to_device(self, device) self.eval() # keep track of the average loss and metrics during the epoch loss_seg_cum = 0.0 loss_rec_cum = 0.0 total_loss_cum = 0.0 cnt = 0 # start epoch y_src_preds = [] ys_src = [] y_tar_preds = [] ys_tar = [] for i, data in enumerate(zip(loader_src, loader_tar)): # get inputs and transfer to suitable device x_src, y_src = tensor_to_device(data[0], device) x_tar, y_tar = tensor_to_device(data[1], device) y_src = get_labels(y_src, coi=self.coi, dtype=int) y_tar = get_labels(y_tar, coi=self.coi, dtype=int) x_src = x_src.float() x_tar = x_tar.float() # zero the gradient buffers self.zero_grad() # forward prop y_src_pred = self(x_src) x_src_pred = self.reconstruction_outputs y_tar_pred = self(x_tar) x_tar_pred = self.reconstruction_outputs # compute loss loss_seg = loss_seg_fn(y_src_pred, y_src) loss_rec = 0.5 * (loss_rec_fn(x_src_pred, x_src) + loss_rec_fn(x_tar_pred, x_tar)) total_loss = loss_seg + self.lambda_rec * loss_rec loss_seg_cum += loss_seg.data.cpu().numpy() loss_rec_cum += loss_rec.data.cpu().numpy() total_loss_cum += total_loss.data.cpu().numpy() cnt += 1 for b in range(y_src_pred.size(0)): y_src_preds.append( F.softmax(y_src_pred, dim=1).data.cpu().numpy()[b, 1, ...]) y_tar_preds.append( F.softmax(y_tar_pred, dim=1).data.cpu().numpy()[b, 1, ...]) ys_src.append(y_src[b, 0, ...].cpu().numpy()) ys_tar.append(y_tar[b, 0, ...].cpu().numpy()) # compute interesting metrics y_src_preds = np.asarray(y_src_preds) y_tar_preds = np.asarray(y_tar_preds) ys_src = np.asarray(ys_src) ys_tar = np.asarray(ys_tar) j_src = jaccard(ys_src, y_src_preds) j_tar = jaccard(ys_src, y_tar_preds) a_src, ba_src, p_src, r_src, f_src = accuracy_metrics( ys_src, y_src_preds) a_tar, ba_tar, p_tar, r_tar, f_tar = accuracy_metrics( ys_tar, y_tar_preds) # don't forget to compute the average and print it loss_seg_avg = loss_seg_cum / cnt loss_rec_avg = loss_rec_cum / cnt total_loss_avg = total_loss_cum / cnt print('[%s] Epoch %5d - Loss seg: %.6f - Loss rec: %.6f - Loss: %.6f' % (datetime.datetime.now(), epoch, loss_seg_avg, loss_rec_avg, total_loss_avg)) # log everything if writer is not None: # always log scalars log_scalars([ loss_seg_avg, loss_rec_avg, total_loss_avg, j_src, a_src, ba_src, p_src, r_src, f_src, j_tar, a_tar, ba_tar, p_tar, r_tar, f_tar ], [ 'test/' + s for s in [ 'loss-rec', 'loss-seg', 'total-loss', 'src/jaccard', 'src/accuracy', 'src/balanced-accuracy', 'src/precision', 'src/recall', 'src/f-score', 'tar/jaccard', 'tar/accuracy', 'tar/balanced-accuracy', 'tar/precision', 'tar/recall', 'tar/f-score' ] ], writer, epoch=epoch) # log images if necessary if write_images: y_src_pred = F.softmax(y_src_pred, dim=1)[:, 1:2, ...].data y_tar_pred = F.softmax(y_tar_pred, dim=1)[:, 1:2, ...].data log_images_3d([ x_src, x_src_pred.data, y_src, y_src_pred, x_tar, x_tar_pred.data, y_tar, y_tar_pred ], [ 'test/' + s for s in [ 'src/x', 'src/x-pred', 'src/y', 'src/y-pred', 'tar/x', 'tar/x-pred', 'tar/y', 'tar/y-pred' ] ], writer, epoch=epoch) return total_loss_avg
def test_epoch(self, loader, loss_fn, epoch, writer=None, write_images=False, device=0): """ Tests the network for one epoch :param loader: dataloader :param loss_fn: loss function :param epoch: current epoch :param writer: summary writer :param write_images: frequency of writing images :param device: GPU device where the computations should occur :return: average testing loss over the epoch """ # perform training on GPU/CPU module_to_device(self, device) self.eval() # keep track of the average loss and metrics during the epoch loss_cum = 0.0 cnt = 0 # test loss y_preds = [] ys = [] ys_ = [] time_start = datetime.datetime.now() for i, data in enumerate(loader): # get the inputs and transfer to suitable device x, y = tensor_to_device(data, device) y_ = get_unlabeled(y) x = x.float() y = get_labels(y, coi=self.coi, dtype=int) y_ = get_labels(y_, coi=[0, 255], dtype=bool) # forward prop y_pred = self(x) # compute loss loss = loss_fn(y_pred, y[:, 0, ...], mask=~y_) loss_cum += loss.data.cpu().numpy() cnt += 1 for b in range(y_pred.size(0)): y_preds.append(F.softmax(y_pred, dim=1)[b, ...].view(y_pred.size(1), -1).data.cpu().numpy()) ys.append(y[b, 0, ...].flatten().cpu().numpy()) ys_.append(y_[b, 0, ...].flatten().cpu().numpy()) # keep track of time runtime = datetime.datetime.now() - time_start seconds = runtime.total_seconds() hours = seconds // 3600 minutes = (seconds - hours * 3600) // 60 seconds = seconds - hours * 3600 - minutes * 60 print_frm( 'Epoch %5d - Runtime for testing: %d hours, %d minutes, %f seconds' % (epoch, hours, minutes, seconds)) # prep for metric computation y_preds = np.concatenate(y_preds, axis=1) ys = np.concatenate(ys) ys_ = np.concatenate(ys_) w = (1 - ys_).astype(bool) js = np.asarray([jaccard((ys == i).astype(int), y_preds[i, :], w=w) for i in range(len(self.coi))]) ams = np.asarray([accuracy_metrics((ys == i).astype(int), y_preds[i, :], w=w) for i in range(len(self.coi))]) # don't forget to compute the average and print it loss_avg = loss_cum / cnt print_frm('Epoch %5d - Average test loss: %.6f' % (epoch, loss_avg)) # log everything if writer is not None: # always log scalars log_scalars([loss_avg, np.mean(js, axis=0), *(np.mean(ams, axis=0))], ['test/' + s for s in ['loss-seg', 'jaccard', 'accuracy', 'balanced-accuracy', 'precision', 'recall', 'f-score']], writer, epoch=epoch) # log images if necessary if write_images: log_images_3d([x], ['test/' + s for s in ['x']], writer, epoch=epoch) y_pred = F.softmax(y_pred, dim=1) for i, c in enumerate(self.coi): if not i == 0: # skip background class y_p = y_pred[:, i:i + 1, ...].data y_t = (y == i).long() log_images_3d([y_t, y_p], ['test/' + s for s in ['y_class_%d)' % (c), 'y_pred_class_%d)' % (c)]], writer, epoch=epoch) return np.mean(js)
def validate(net, data, labels, input_size, in_channels=1, classes_of_interest=(0, 1), batch_size=1, write_dir=None, val_file=None, track_progress=False, device=0, orientations=(0, ), normalization='unit'): """ Validate a network on a dataset and its labels :param net: image-to-image segmentation network :param data: 3D array (Z, Y, X) representing the 3D image :param labels: 3D array (Z, Y, X) representing the 3D labels :param input_size: size of the inputs (either 2 or 3-tuple) for processing :param in_channels: Amount of subsequent slices that serve as input for the network (should be odd) :param classes_of_interest: index of the label of interest :param batch_size: batch size for processing :param write_dir: optionally, specify a directory to write the output :param val_file: optionally, specify a file to write the validation results :param track_progress: optionally, for tracking progress with progress bar :param device: GPU device where the computations should occur :param orientations: list of orientations to perform segmentation: 0-Z, 1-Y, 2-X (only for 2D based segmentation) :param normalization: type of data normalization (unit, z or minmax) :return: validation results, i.e. accuracy, precision, recall, f-score, jaccard and dice score """ print_frm('Validating the trained network...') # compute segmentation for each orientation and average results segmentation = np.zeros((net.out_channels, *data.shape)) for orientation in orientations: segmentation += segment(data, net, input_size, in_channels=in_channels, batch_size=batch_size, track_progress=track_progress, device=device, orientation=orientation, normalization=normalization) segmentation = segmentation / len(orientations) # compute metrics w = labels != 255 comp_hausdorff = np.sum(labels == 255) == 0 js = np.asarray([ jaccard(segmentation[i], (labels == c).astype('float'), w=w) for i, c in enumerate(classes_of_interest) ]) ams = np.asarray([ accuracy_metrics(segmentation[i], (labels == c).astype('float'), w=w) for i, c in enumerate(classes_of_interest) ]) for i, c in enumerate(classes_of_interest): if comp_hausdorff: h = hausdorff_distance(segmentation[i], labels)[0] else: h = -1 # report results print_frm('Validation performance for class %d: ' % c) print_frm(' - Accuracy: %f' % ams[i, 0]) print_frm(' - Balanced accuracy: %f' % ams[i, 1]) print_frm(' - Precision: %f' % ams[i, 2]) print_frm(' - Recall: %f' % ams[i, 3]) print_frm(' - F1 score: %f' % ams[i, 4]) print_frm(' - IoU: %f' % js[i]) print_frm(' - Hausdorff distance: %f' % h) # report results print_frm('Validation performance mean: ') print_frm(' - Accuracy: %f' % np.mean(ams[:, 0])) print_frm(' - Balanced accuracy: %f' % np.mean(ams[:, 1])) print_frm(' - Precision: %f' % np.mean(ams[:, 2])) print_frm(' - Recall: %f' % np.mean(ams[:, 3])) print_frm(' - F1 score: %f' % np.mean(ams[:, 4])) print_frm(' - mIoU: %f' % np.mean(js)) # write stuff if necessary if write_dir is not None: print_frm('Writing out the segmentation...') mkdir(write_dir) segmentation_volume = np.zeros(segmentation.shape[1:]) for i, c in enumerate(classes_of_interest): segmentation_volume[segmentation[i] > 0.5] = c write_volume(segmentation_volume, write_dir, type='pngseq') if val_file is not None: np.save(val_file, np.concatenate((js[:, np.newaxis], ams), axis=1)) return js, ams