def neuro_start(inputs, targets, training): #initializes the neural network network=neuro.setup_network(inputs) #The number of repetitions that you will #be training your network with training_reps= training #trains your neural network neuro.train(network, inputs, targets, training_reps) total = 0 correct = 0 for i in range(1,10): for x in range(1,10): pred = neuro.predict(network, [i+x]) #rounds the predicted value to either 0 or 1 #print '{} == pred {}'.format(i+x,pred) pred = np.round(pred) if (i+x)%2 == pred: correct+= 1 total += 1 percent = (correct/total) * 100 #print 'with training: {}'.format(training_reps) #print 'correct: {}\n total: {} \n {:.2f}%'.format(correct, total, (correct/total) * 100) return training_reps, percent, correct, total
network = [] data = open('test_cases.csv') data = data.read() data = data.split('\n') data.pop() for i in data: tokens = i.split(',') inputs.append([float(tokens[0]), float(tokens[1]), float(tokens[2])]) targets.append([float(tokens[3])]) network = neuro.setup_network(inputs) neuro.train(network, inputs, targets, reps) user_answer = 'y' while user_answer == 'y': r = float(raw_input("Enter a value for red between 0 and 255: ")) / 255 g = float(raw_input("Enter a value for green between 0 and 255: ")) / 255 b = float(raw_input("Enter a value for blue between 0 and 255: ")) / 255 pred = round(neuro.predict(network, [r, g, b]), 2) if (pred >= 0.0 and pred < 0.33): print("\nThe color is RED!\n") elif (pred >= 0.33 and pred < 0.66): print("\nThe color is GREEN!\n") elif (pred >= 0.66 and pred < 1.0): print("\nThe color is BLUE!\n") user_answer = raw_input("Again? (y/n): ")
targets = [[1], [0], [0], [1], [0], [0], [1], [1], [0], [0], [0], [1], [1], [1], [1]] reps = 1000 inputs = np.float32(inputs) / 255.0 network = [] network = neuro.setup_network(inputs) neuro.train(network, inputs, targets, reps) #TAKE INPUT red_value = input("Enter Red Value: ") green_value = input("Enter Green Value: ") blue_value = input("Enter Blue Value: ") red_value = float(red_value) / 255.0 green_value = float(green_value) / 255.0 blue_value = float(blue_value) / 255.0 color = [red_value, green_value, blue_value] pred = neuro.predict(network, color) print("Is it blue?") if (pred >= float(0.70)): print("YES") else: print("NO")
neural_counter = 0 naive_counter = 0 tree_counter = 0 static_inputs = list(all_inputs) for index in range(len(result)): test_input = all_inputs.pop(index) inputs = all_inputs all_inputs = list(static_inputs) reps = 50 network = [] network = neuro.setup_network(inputs) neuro.train(network, inputs, targets, reps) pred = neuro.predict(network, test_input) if (pred >= 0 and pred < 0.5): pred = 0 elif (pred >= 0.5 and pred < 1.0): pred = 1 else: pred = -1 if (pred == 0): party_guess = "Republican" elif (pred == 1): party_guess = "Democrat" else: party_guess = "error - out of range"
#training targets placed in the same order as their #corresponding inputs (listed above) targets = [[0], [0], [0], [1]] #initializes the neural network network = neuro.setup_network(inputs) #The number of repetitions that you will #be training your network with training_reps = 100 #trains your neural network neuro.train(network, inputs, targets, training_reps) #gets the predicted value for input [0,0] pred = neuro.predict(network, [0, 0]) #rounds the predicted value to either 0 or 1 pred = int(np.round(pred)) print "0 & 0 =", pred #the following lines are the same as the lines #documented above except they are for inputs [0,1], [1,0], and [1,1] pred = neuro.predict(network, [0, 1]) pred = int(np.round(pred)) print "0 & 1 =", pred pred = neuro.predict(network, [1, 0]) pred = int(np.round(pred))
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] testing5 = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] testing6 = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] pred1 = neuro.predict(network, testing1) pred2 = neuro.predict(network, testing2) pred3 = neuro.predict(network, testing3) pred4 = neuro.predict(network, testing4) pred5 = neuro.predict(network, testing5) pred6 = neuro.predict(network, testing6) print(pred1, pred2, pred3, pred4, pred5, pred6)