def bsub_mean(self): """Return a baseline-subtracted, average evoked response trace between two cells. All traces are downsampled to the minimum sample rate in the set. """ if len(self) == 0: return None if self._bsub_mean is None: responses = self.responses baselines = self.baselines # downsample all traces to the same rate # yarg: how does this change SNR? avg = TraceList([r.copy(t0=0) for r in responses]).mean() avg_baseline = TraceList([b.copy(t0=0) for b in baselines]).mean().data # subtract baseline baseline = np.median(avg_baseline) bsub = avg.data - baseline result = avg.copy(data=bsub) assert len(result.time_values) == len(result) # Attach some extra metadata to the result: result.meta['baseline'] = avg_baseline result.meta['baseline_med'] = baseline if len(avg_baseline) == 0: result.meta['baseline_std'] = None else: result.meta['baseline_std'] = scipy.signal.detrend(avg_baseline).std() self._bsub_mean = result return self._bsub_mean
def train_response_plot(expt_list, name=None, summary_plots=[None, None], color=None): ind_base_subtract = [] rec_base_subtract = [] train_plots = pg.plot() train_plots.setLabels(left=('Vm', 'V')) tau =15e-3 lp = 1000 for expt in expt_list: for pre, post in expt.connections: if expt.cells[pre].cre_type == cre_type[0] and expt.cells[post].cre_type == cre_type[1]: print ('Processing experiment: %s' % (expt.nwb_file)) ind = [] rec = [] analyzer = DynamicsAnalyzer(expt, pre, post) train_responses = analyzer.train_responses artifact = analyzer.cross_talk() if artifact > 0.03e-3: continue for i, stim_params in enumerate(train_responses.keys()): rec_t = int(np.round(stim_params[1] * 1e3, -1)) if stim_params[0] == 50 and rec_t == 250: pulse_offsets = analyzer.pulse_offsets if len(train_responses[stim_params][0]) != 0: ind_group = train_responses[stim_params][0] rec_group = train_responses[stim_params][1] for j in range(len(ind_group)): ind.append(ind_group.responses[j]) rec.append(rec_group.responses[j]) if len(ind) > 5: ind_avg = TraceList(ind).mean() rec_avg = TraceList(rec).mean() rec_avg.t0 = 0.3 base = float_mode(ind_avg.data[:int(10e-3 / ind_avg.dt)]) ind_base_subtract.append(ind_avg.copy(data=ind_avg.data - base)) rec_base_subtract.append(rec_avg.copy(data=rec_avg.data - base)) train_plots.plot(ind_avg.time_values, ind_avg.data - base) train_plots.plot(rec_avg.time_values, rec_avg.data - base) app.processEvents() if len(ind_base_subtract) != 0: print (name + ' n = %d' % len(ind_base_subtract)) ind_grand_mean = TraceList(ind_base_subtract).mean() rec_grand_mean = TraceList(rec_base_subtract).mean() ind_grand_mean_dec = bessel_filter(exp_deconvolve(ind_grand_mean, tau), lp) train_plots.addLegend() train_plots.plot(ind_grand_mean.time_values, ind_grand_mean.data, pen={'color': 'g', 'width': 3}, name=name) train_plots.plot(rec_grand_mean.time_values, rec_grand_mean.data, pen={'color': 'g', 'width': 3}, name=name) #train_plots.plot(ind_grand_mean_dec.time_values, ind_grand_mean_dec.data, pen={'color': 'g', 'dash': [1,5,3,2]}) train_amps = train_amp([ind_base_subtract, rec_base_subtract], pulse_offsets, '+') if ind_grand_mean is not None: train_plots = summary_plot_train(ind_grand_mean, plot=summary_plots[0], color=color, name=(legend + ' 50 Hz induction')) train_plots = summary_plot_train(rec_grand_mean, plot=summary_plots[0], color=color) train_plots2 = summary_plot_train(ind_grand_mean_dec, plot=summary_plots[1], color=color, name=(legend + ' 50 Hz induction')) return train_plots, train_plots2, train_amps else: print ("No Traces") return None
def get_amplitude(response_list): avg_trace = TraceList(response_list).mean() data = avg_trace.data dt = avg_trace.dt base = float_mode(data[:int(10e-3 / dt)]) bsub_mean = avg_trace.copy(data=data - base) neg = bsub_mean.data[int(13e-3 / dt):].min() pos = bsub_mean.data[int(13e-3 / dt):].max() avg_amp = neg if abs(neg) > abs(pos) else pos amp_sign = '-' if avg_amp < 0 else '+' peak_ind = list(bsub_mean.data).index(avg_amp) peak_t = bsub_mean.time_values[peak_ind] return bsub_mean, avg_amp, amp_sign, peak_t
def train_response_plot(expt_list, name=None, summary_plots=[None, None], color=None): grand_train = [[], []] train_plots = pg.plot() train_plots.setLabels(left=('Vm', 'V')) tau =15e-3 lp = 1000 for expt in expt_list: for pre, post in expt.connections: if expt.cells[pre].cre_type == cre_type[0] and expt.cells[post].cre_type == cre_type[1]: print ('Processing experiment: %s' % (expt.nwb_file)) train_responses, artifact = get_response(expt, pre, post, analysis_type='train') if artifact > 0.03e-3: continue train_filter = response_filter(train_responses['responses'], freq_range=[50, 50], train=0, delta_t=250) pulse_offsets = response_filter(train_responses['pulse_offsets'], freq_range=[50, 50], train=0, delta_t=250) if len(train_filter[0]) > 5: ind_avg = TraceList(train_filter[0]).mean() rec_avg = TraceList(train_filter[1]).mean() rec_avg.t0 = 0.3 grand_train[0].append(ind_avg) grand_train[1].append(rec_avg) train_plots.plot(ind_avg.time_values, ind_avg.data) train_plots.plot(rec_avg.time_values, rec_avg.data) app.processEvents() if len(grand_train[0]) != 0: print (name + ' n = %d' % len(grand_train[0])) ind_grand_mean = TraceList(grand_train[0]).mean() rec_grand_mean = TraceList(grand_train[1]).mean() ind_grand_mean_dec = bessel_filter(exp_deconvolve(ind_grand_mean, tau), lp) train_plots.addLegend() train_plots.plot(ind_grand_mean.time_values, ind_grand_mean.data, pen={'color': 'g', 'width': 3}, name=name) train_plots.plot(rec_grand_mean.time_values, rec_grand_mean.data, pen={'color': 'g', 'width': 3}, name=name) train_amps = train_amp([grand_train[0], grand_train[1]], pulse_offsets, '+') if ind_grand_mean is not None: train_plots = summary_plot_train(ind_grand_mean, plot=summary_plots[0], color=color, name=(legend + ' 50 Hz induction')) train_plots = summary_plot_train(rec_grand_mean, plot=summary_plots[0], color=color) train_plots2 = summary_plot_train(ind_grand_mean_dec, plot=summary_plots[1], color=color, name=(legend + ' 50 Hz induction')) return train_plots, train_plots2, train_amps else: print ("No Traces") return None
def first_pulse_features(pair, pulse_responses, pulse_response_amps): avg_psp = TraceList(pulse_responses).mean() dt = avg_psp.dt avg_psp_baseline = float_mode(avg_psp.data[:int(10e-3 / dt)]) avg_psp_bsub = avg_psp.copy(data=avg_psp.data - avg_psp_baseline) lower_bound = -float('inf') upper_bound = float('inf') xoffset = pair.connection_strength.ic_fit_xoffset if xoffset is None: xoffset = 14 * 10e-3 synapse_type = pair.connection_strength.synapse_type if synapse_type == 'ex': amp_sign = '+' elif synapse_type == 'in': amp_sign = '-' else: raise Exception( 'Synapse type is not defined, reconsider fitting this pair %s %d->%d' % (pair.expt_id, pair.pre_cell_id, pair.post_cell_id)) weight = np.ones(len( avg_psp.data)) * 10. # set everything to ten initially weight[int(10e-3 / dt):int(12e-3 / dt)] = 0. # area around stim artifact weight[int(12e-3 / dt):int(19e-3 / dt)] = 30. # area around steep PSP rise psp_fits = fit_psp(avg_psp, xoffset=(xoffset, lower_bound, upper_bound), yoffset=(avg_psp_baseline, lower_bound, upper_bound), sign=amp_sign, weight=weight) amp_cv = np.std(pulse_response_amps) / np.mean(pulse_response_amps) features = { 'ic_fit_amp': psp_fits.best_values['amp'], 'ic_fit_latency': psp_fits.best_values['xoffset'] - 10e-3, 'ic_fit_rise_time': psp_fits.best_values['rise_time'], 'ic_fit_decay_tau': psp_fits.best_values['decay_tau'], 'ic_amp_cv': amp_cv, 'avg_psp': avg_psp_bsub.data } #'ic_fit_NRMSE': psp_fits.nrmse()} TODO: nrmse not returned from psp_fits? return features
def clicked(sp, pts): traces = pts[0].data()['traces'] print([t.amp for t in traces]) plt = pg.plot() bsub = [t.copy(data=t.data - np.median(t.time_slice(0, 1e-3).data)) for t in traces] for t in bsub: plt.plot(t.time_values, t.data, pen=(0, 0, 0, 50)) mean = TraceList(bsub).mean() plt.plot(mean.time_values, mean.data, pen='g')
def plot_element_data(self, pre_class, post_class, element, field_name, color='g', trace_plt=None): trace_plt = None val = element[field_name].mean() line = pg.InfiniteLine(val, pen={ 'color': color, 'width': 2 }, movable=False) scatter = None baseline_window = int(db.default_sample_rate * 5e-3) values = [] traces = [] point_data = [] for pair, value in element[field_name].iteritems(): if np.isnan(value): continue traces = [] if trace_plt is not None: trace = cs.ic_average_response if field_name.startswith( 'ic') else cs.vc_average_response x_offset = cs.ic_fit_latency if field_name.startswith( 'ic') else cs.vc_fit_latency trace = format_trace(trace, baseline_window, x_offset, align='psp') trace_plt.plot(trace.time_values, trace.data) traces.append(trace) values.append(value) y_values = pg.pseudoScatter(np.asarray(values, dtype=float), spacing=1) scatter = pg.ScatterPlotItem(symbol='o', brush=(color + (150, )), pen='w', size=12) scatter.setData(values, y_values + 10.) if trace_plt is not None: grand_trace = TraceList(traces).mean() trace_plt.plot(grand_trace.time_values, grand_trace.data, pen={ 'color': color, 'width': 3 }) units = 'V' if field_name.startswith('ic') else 'A' trace_plt.setXRange(0, 20e-3) trace_plt.setLabels(left=('', units), bottom=('Time from stimulus', 's')) return line, scatter
def first_pulse_features(pair, pulse_responses, pulse_response_amps): avg_psp = TraceList(pulse_responses).mean() dt = avg_psp.dt avg_psp_baseline = float_mode(avg_psp.data[:int(10e-3/dt)]) avg_psp_bsub = avg_psp.copy(data=avg_psp.data - avg_psp_baseline) lower_bound = -float('inf') upper_bound = float('inf') xoffset = pair.connection_strength.ic_fit_xoffset if xoffset is None: xoffset = 14*10e-3 synapse_type = pair.connection_strength.synapse_type if synapse_type == 'ex': amp_sign = '+' elif synapse_type == 'in': amp_sign = '-' else: raise Exception('Synapse type is not defined, reconsider fitting this pair %s %d->%d' % (pair.expt_id, pair.pre_cell_id, pair.post_cell_id)) weight = np.ones(len(avg_psp.data)) * 10. # set everything to ten initially weight[int(10e-3 / dt):int(12e-3 / dt)] = 0. # area around stim artifact weight[int(12e-3 / dt):int(19e-3 / dt)] = 30. # area around steep PSP rise psp_fits = fit_psp(avg_psp, xoffset=(xoffset, lower_bound, upper_bound), yoffset=(avg_psp_baseline, lower_bound, upper_bound), sign=amp_sign, weight=weight) amp_cv = np.std(pulse_response_amps)/np.mean(pulse_response_amps) features = {'ic_fit_amp': psp_fits.best_values['amp'], 'ic_fit_latency': psp_fits.best_values['xoffset'] - 10e-3, 'ic_fit_rise_time': psp_fits.best_values['rise_time'], 'ic_fit_decay_tau': psp_fits.best_values['decay_tau'], 'ic_amp_cv': amp_cv, 'avg_psp': avg_psp_bsub.data} #'ic_fit_NRMSE': psp_fits.nrmse()} TODO: nrmse not returned from psp_fits? return features
def clicked(sp, pts): data = pts[0].data() print("-----------------------\nclicked:", data['rise_time'], data['amp'], data['prediction'], data['confidence']) for r in data['results']: print({k:r[k] for k in classifier.features}) traces = data['traces'] plt = pg.plot() bsub = [t.copy(data=t.data - np.median(t.time_slice(0, 1e-3).data)) for t in traces] for t in bsub: plt.plot(t.time_values, t.data, pen=(0, 0, 0, 50)) mean = TraceList(bsub).mean() plt.plot(mean.time_values, mean.data, pen='g')
def get_average_pulse_response(pair, desired_clamp='ic'): """ Inputs ------ pair: multipatch_analysis.database.database.Pair object desired_clamp: string Specifies whether current or voltage clamp sweeps are desired. Options are: 'ic': current clamp 'vc': voltage clamp Returns ------- Note that all returned variables are set to None if there are no acceptable (qc pasing) sweeps pulse_responses: TraceList traces where the start of each trace is 10 ms before the spike pulse_ids: list of ints pulse ids of *pulse_responses* psp_amps_measured: list of floats amplitude of *pulse_responses* from the *pulse_response* table freq: list of floats the stimulation frequency corresponding to the *pulse_responses* avg_psp: Trace average of the pulse_responses measured_relative_amp: float measured amplitude relative to baseline measured_baseline: float value of baseline """ # get pulses that pass qc pulse_responses, pulse_ids, psp_amps_measured, freq = extract_first_pulse_info_from_Pair_object( pair, desired_clamp=desired_clamp) # if pulses are returned take the average if len(pulse_responses) > 0: avg_psp = TraceList(pulse_responses).mean() else: return None, None, None, None, None, None, None # get the measured baseline and amplitude of psp measured_relative_amp, measured_baseline = measure_amp( avg_psp.data, [0, int((time_before_spike - 1.e-3) / avg_psp.dt)], [int((time_before_spike + .5e-3) / avg_psp.dt), -1]) return pulse_responses, pulse_ids, psp_amps_measured, freq, avg_psp, measured_relative_amp, measured_baseline
def first_pulse_plot(expt_list, name=None, summary_plot=None, color=None, scatter=0): amp_plots = pg.plot() amp_plots.setLabels(left=('Vm', 'V')) amp_base_subtract = [] avg_ests = [] for expt in expt_list: for pre, post in expt.connections: if expt.cells[pre].cre_type == cre_type[0] and expt.cells[post].cre_type == cre_type[1]: avg_est, avg_amp, n_sweeps = responses(expt, pre, post) if expt.cells[pre].cre_type in EXCITATORY_CRE_TYPES and avg_est < 0: continue elif expt.cells[pre].cre_type in INHIBITORY_CRE_TYPES and avg_est > 0: continue if n_sweeps >= 10: avg_amp.t0 = 0 avg_ests.append(avg_est) base = float_mode(avg_amp.data[:int(10e-3 / avg_amp.dt)]) amp_base_subtract.append(avg_amp.copy(data=avg_amp.data - base)) current_connection_HS = post, pre if len(expt.connections) > 1 and args.recip is True: for i,x in enumerate(expt.connections): if x == current_connection_HS: # determine if a reciprocal connection amp_plots.plot(avg_amp.time_values, avg_amp.data - base, pen={'color': 'r', 'width': 1}) break elif x != current_connection_HS and i == len(expt.connections) - 1: # reciprocal connection was not found amp_plots.plot(avg_amp.time_values, avg_amp.data - base) else: amp_plots.plot(avg_amp.time_values, avg_amp.data - base) app.processEvents() if len(amp_base_subtract) != 0: print(name + ' n = %d' % len(amp_base_subtract)) grand_mean = TraceList(amp_base_subtract).mean() grand_est = np.mean(np.array(avg_ests)) amp_plots.addLegend() amp_plots.plot(grand_mean.time_values, grand_mean.data, pen={'color': 'g', 'width': 3}, name=name) amp_plots.addLine(y=grand_est, pen={'color': 'g'}) if grand_mean is not None: print(legend + ' Grand mean amplitude = %f' % grand_est) summary_plots = summary_plot_pulse(grand_mean, avg_ests, grand_est, labels=['Vm', 'V'], titles='Amplitude', i=scatter, plot=summary_plot, color=color, name=legend) return avg_ests, summary_plots else: print ("No Traces") return None, avg_ests, None, None
def plot_element_data(self, pre_class, post_class, element, field_name, color='g', trace_plt=None): summary = element.agg(self.summary_stat) val = summary[field_name]['metric_summary'] line = pg.InfiniteLine(val, pen={ 'color': color, 'width': 2 }, movable=False) scatter = None baseline_window = int(db.default_sample_rate * 5e-3) traces = [] point_data = [] connections = element[element['connected'] == True].index.tolist() for pair in connections: cs = pair.connection_strength trace = cs.ic_average_response if trace is not None: x_offset = cs.ic_fit_xoffset trace = format_trace(trace, baseline_window, x_offset, align='psp') trace_plt.plot(trace.time_values, trace.data) traces.append(trace) grand_trace = TraceList(traces).mean() name = ('%s->%s, n=%d' % (pre_class, post_class, len(traces))) trace_plt.plot(grand_trace.time_values, grand_trace.data, pen={ 'color': color, 'width': 3 }, name=name) trace_plt.setXRange(0, 20e-3) trace_plt.setLabels(left=('', 'V'), bottom=('Time from stimulus', 's')) return line, scatter
def trace_avg(response_list): # doc string commented out to discourage code reuse given the change of values of t0 # """ # Parameters # ---------- # response_list : list of neuroanalysis.data.TraceView objects # neuroanalysis.data.TraceView object contains waveform data. # # Returns # ------- # bsub_mean : neuroanalysis.data.Trace object # averages and baseline subtracts the ephys waveform data in the # input response_list TraceView objects and replaces the .t0 value with 0. # # """ for trace in response_list: trace.t0 = 0 #align traces for the use of TraceList().mean() funtion avg_trace = TraceList(response_list).mean() #returns the average of the wave form in a of a neuroanalysis.data.Trace object bsub_mean = bsub(avg_trace) #returns a copy of avg_trace but replaces the ephys waveform in .data with the base_line subtracted wave_form return bsub_mean
def get_tseries(self, series, bsub=True, align='stim', bsub_window=(-3e-3, 0)): """Return a TraceList of timeseries, optionally baseline-subtracted and time-aligned. Parameters ---------- series : str "stim", "pre", or "post" """ assert series in ( 'stim', 'pre', 'post'), "series must be one of 'stim', 'pre', or 'post'" tseries = [] for i, sr in enumerate(self.srs): ts = getattr(sr, series + '_tseries') if bsub: bstart = sr.stim_pulse.onset_time + bsub_window[0] bstop = sr.stim_pulse.onset_time + bsub_window[1] baseline = np.median(ts.time_slice(bstart, bstop).data) ts = ts - baseline if align is not None: if align == 'stim': t_align = sr.stim_pulse.onset_time elif align == 'pre': t_align = sr.stim_pulse.spikes[0].max_dvdt_time elif align == 'post': raise NotImplementedError() else: raise ValueError("invalid time alignment mode %r" % align) t_align = t_align or 0 ts = ts.copy(t0=ts.t0 - t_align) tseries.append(ts) return TraceList(tseries)
def analyze_pair_connectivity(amps, sign=None): """Given response strength records for a single pair, generate summary statistics characterizing strength, latency, and connectivity. Parameters ---------- amps : dict Contains foreground and background strength analysis records (see input format below) sign : None, -1, or +1 If None, then automatically determine whether to treat this connection as inhibitory or excitatory. Input must have the following structure:: amps = { ('ic', 'fg'): recs, ('ic', 'bg'): recs, ('vc', 'fg'): recs, ('vc', 'bg'): recs, } Where each *recs* must be a structured array containing fields as returned by get_amps() and get_baseline_amps(). The overall strategy here is: 1. Make an initial decision on whether to treat this pair as excitatory or inhibitory, based on differences between foreground and background amplitude measurements 2. Generate mean and stdev for amplitudes, deconvolved amplitudes, and deconvolved latencies 3. Generate KS test p values describing the differences between foreground and background distributions for amplitude, deconvolved amplitude, and deconvolved latency """ requested_sign = sign fields = {} # used to fill the new DB record # Use KS p value to check for differences between foreground and background qc_amps = {} ks_pvals = {} amp_means = {} amp_diffs = {} for clamp_mode in ('ic', 'vc'): clamp_mode_fg = amps[clamp_mode, 'fg'] clamp_mode_bg = amps[clamp_mode, 'bg'] if (len(clamp_mode_fg) == 0 or len(clamp_mode_bg) == 0): continue for sign in ('pos', 'neg'): # Separate into positive/negative tests and filter out responses that failed qc qc_field = {'vc': {'pos': 'in_qc_pass', 'neg': 'ex_qc_pass'}, 'ic': {'pos': 'ex_qc_pass', 'neg': 'in_qc_pass'}}[clamp_mode][sign] fg = clamp_mode_fg[clamp_mode_fg[qc_field]] bg = clamp_mode_bg[clamp_mode_bg[qc_field]] qc_amps[sign, clamp_mode, 'fg'] = fg qc_amps[sign, clamp_mode, 'bg'] = bg if (len(fg) == 0 or len(bg) == 0): continue # Measure some statistics from these records fg = fg[sign + '_dec_amp'] bg = bg[sign + '_dec_amp'] pval = scipy.stats.ks_2samp(fg, bg).pvalue ks_pvals[(sign, clamp_mode)] = pval # we could ensure that the average amplitude is in the right direction: fg_mean = np.mean(fg) bg_mean = np.mean(bg) amp_means[sign, clamp_mode] = {'fg': fg_mean, 'bg': bg_mean} amp_diffs[sign, clamp_mode] = fg_mean - bg_mean if requested_sign is None: # Decide whether to treat this connection as excitatory or inhibitory. # strategy: accumulate evidence for either possibility by checking # the ks p-values for each sign/clamp mode and the direction of the deflection is_exc = 0 # print(expt.acq_timestamp, pair.pre_cell.ext_id, pair.post_cell.ext_id) for sign in ('pos', 'neg'): for mode in ('ic', 'vc'): ks = ks_pvals.get((sign, mode), None) if ks is None: continue # turn p value into a reasonable scale factor ks = norm_pvalue(ks) dif_sign = 1 if amp_diffs[sign, mode] > 0 else -1 if mode == 'vc': dif_sign *= -1 is_exc += dif_sign * ks # print(" ", sign, mode, is_exc, dif_sign * ks) else: is_exc = requested_sign if is_exc > 0: fields['synapse_type'] = 'ex' signs = {'ic':'pos', 'vc':'neg'} else: fields['synapse_type'] = 'in' signs = {'ic':'neg', 'vc':'pos'} # compute the rest of statistics for only positive or negative deflections for clamp_mode in ('ic', 'vc'): sign = signs[clamp_mode] fg = qc_amps.get((sign, clamp_mode, 'fg')) bg = qc_amps.get((sign, clamp_mode, 'bg')) if fg is None or bg is None or len(fg) == 0 or len(bg) == 0: fields[clamp_mode + '_n_samples'] = 0 continue fields[clamp_mode + '_n_samples'] = len(fg) fields[clamp_mode + '_crosstalk_mean'] = np.mean(fg['crosstalk']) fields[clamp_mode + '_base_crosstalk_mean'] = np.mean(bg['crosstalk']) # measure mean, stdev, and statistical differences between # fg and bg for each measurement for val, field in [('amp', 'amp'), ('deconv_amp', 'dec_amp'), ('latency', 'dec_latency')]: f = fg[sign + '_' + field] b = bg[sign + '_' + field] fields[clamp_mode + '_' + val + '_mean'] = np.mean(f) fields[clamp_mode + '_' + val + '_stdev'] = np.std(f) fields[clamp_mode + '_base_' + val + '_mean'] = np.mean(b) fields[clamp_mode + '_base_' + val + '_stdev'] = np.std(b) # statistical tests comparing fg vs bg # Note: we use log(1-log(pval)) because it's nicer to plot and easier to # use as a classifier input tt_pval = scipy.stats.ttest_ind(f, b, equal_var=False).pvalue ks_pval = scipy.stats.ks_2samp(f, b).pvalue fields[clamp_mode + '_' + val + '_ttest'] = norm_pvalue(tt_pval) fields[clamp_mode + '_' + val + '_ks2samp'] = norm_pvalue(ks_pval) ### generate the average response and psp fit # collect all bg and fg traces # bg_traces = TraceList([Trace(data, sample_rate=db.default_sample_rate) for data in amps[clamp_mode, 'bg']['data']]) fg_traces = TraceList() for rec in fg: t0 = rec['response_start_time'] - rec['max_dvdt_time'] # time-align to presynaptic spike trace = Trace(rec['data'], sample_rate=db.default_sample_rate, t0=t0) fg_traces.append(trace) # get averages # bg_avg = bg_traces.mean() fg_avg = fg_traces.mean() base_rgn = fg_avg.time_slice(-6e-3, 0) base = float_mode(base_rgn.data) fields[clamp_mode + '_average_response'] = fg_avg.data fields[clamp_mode + '_average_response_t0'] = fg_avg.t0 fields[clamp_mode + '_average_base_stdev'] = base_rgn.std() sign = {'pos':'+', 'neg':'-'}[signs[clamp_mode]] fg_bsub = fg_avg.copy(data=fg_avg.data - base) # remove base to help fitting try: fit = fit_psp(fg_bsub, mode=clamp_mode, sign=sign, xoffset=(1e-3, 0, 6e-3), yoffset=(0, None, None), rise_time_mult_factor=4) for param, val in fit.best_values.items(): fields['%s_fit_%s' % (clamp_mode, param)] = val fields[clamp_mode + '_fit_yoffset'] = fit.best_values['yoffset'] + base fields[clamp_mode + '_fit_nrmse'] = fit.nrmse() except: print("Error in PSP fit:") sys.excepthook(*sys.exc_info()) continue #global fit_plot #if fit_plot is None: #fit_plot = FitExplorer(fit) #fit_plot.show() #else: #fit_plot.set_fit(fit) #raw_input("Waiting to continue..") return fields
train_response, freqs, holding, thresh=sweep_threshold, ind_dict=grand_induction, offset_dict=offset_ind) grand_recovery, offset_rec = recovery_summary( train_response, t_rec, holding, thresh=sweep_threshold, rec_dict=grand_recovery, offset_dict=offset_rec) if len(grand_pulse_response) > 0: grand_pulse_trace = TraceList(grand_pulse_response).mean() p2 = trace_plot(grand_pulse_trace, color=avg_color, plot=p2, x_range=[0, 27e-3], name=('n = %d' % len(grand_pulse_response))) if len(grand_induction) > 0: for f, freq in enumerate(freqs): if freq in grand_induction: offset = offset_ind[freq] ind_pass_qc = train_qc(grand_induction[freq], offset, amp=amp_thresh, sign=sign) n = len(ind_pass_qc[0]) if n > 0:
def trace_avg(response_list): for trace in response_list: trace.t0 = 0 avg_trace = TraceList(response_list).mean() bsub_mean = bsub(avg_trace) return bsub_mean
offset_dict=pulse_offset_rec, uid=(expt.uid, pre, post)) for f, freq in enumerate(freqs): if freq not in induction_grand.keys(): print("%d Hz not represented in data set for %s" % (freq, c_type)) continue ind_offsets = pulse_offset_ind[freq] qc_plot.clear() ind_pass_qc = train_qc(induction_grand[freq], ind_offsets, amp=qc_params[1][c], sign=qc_params[0], plot=qc_plot) n_synapses = len(ind_pass_qc[0]) if n_synapses > 0: induction_grand_trace = TraceList(ind_pass_qc[0]).mean() ind_rec_grand_trace = TraceList(ind_pass_qc[1]).mean() ind_amp = train_amp(ind_pass_qc, ind_offsets, '+') ind_amp_grand = np.nanmean(ind_amp, 0) if f == 0: ind_plot[f, c].setTitle(connection_types[c]) type = pg.LabelItem('%s -> %s' % connection_types[c]) type.setParentItem(summary_plot[c, 0]) type.setPos(50, 0) if c == 0: label = pg.LabelItem('%d Hz Induction' % freq) label.setParentItem(ind_plot[f, c].vb) label.setPos(50, 0) summary_plot[c, 0].setTitle('Induction') ind_plot[f, c].addLegend()
def plot_element_data(self, pre_class, post_class, element, field_name, color='g', trace_plt=None): fn = field_name.split('_all')[0] if field_name.endswith( 'all') else field_name.split('_first_pulse')[0] val = element[field_name].mean() line = pg.InfiniteLine(val, pen={ 'color': color, 'width': 2 }, movable=False) scatter = None baseline_window = int(db.default_sample_rate * 5e-3) values = [] traces = [] point_data = [] for pair, value in element[field_name].iteritems(): if pair.synapse is not True: continue if np.isnan(value): continue if field_name.endswith('all'): cs = pair.connection_strength trace = cs.ic_average_response if field_name.startswith( 'ic') else cs.vc_average_response x_offset = cs.ic_fit_xoffset if field_name.startswith( 'ic') else cs.vc_fit_xoffset elif field_name.endswith('first_pulse'): fpf = pair.avg_first_pulse_fit if fpf is None: continue trace = fpf.ic_avg_psp_data if field_name.startswith( 'ic') else fpf.vc_avg_psp_data x_offset = fpf.ic_latency if field_name.startswith( 'ic') else fpf.vc_latency if trace is None: continue values.append(value) trace = format_trace(trace, baseline_window, x_offset, align='psp') trace_item = trace_plt.plot(trace.time_values, trace.data) point_data.append(pair) trace_item.pair = pair trace_item.curve.setClickable(True) trace_item.sigClicked.connect(self.trace_plot_clicked) traces.append(trace) self.pair_items[pair.id] = [trace_item] y_values = pg.pseudoScatter(np.asarray(values, dtype=float), spacing=1) scatter = pg.ScatterPlotItem(symbol='o', brush=(color + (150, )), pen='w', size=12) scatter.setData(values, y_values + 10., data=point_data) for point in scatter.points(): pair_id = point.data().id self.pair_items[pair_id].append(point) scatter.sigClicked.connect(self.scatter_plot_clicked) grand_trace = TraceList(traces).mean() name = ('%s->%s, n=%d' % (pre_class, post_class, len(traces))) trace_plt.plot(grand_trace.time_values, grand_trace.data, pen={ 'color': color, 'width': 3 }, name=name) units = 'V' if field_name.startswith('ic') else 'A' trace_plt.setXRange(0, 20e-3) trace_plt.setLabels(left=('', units), bottom=('Time from stimulus', 's')) return line, scatter
else: trace_color = (0, 0, 0, 30) trace_plot(avg_trace, trace_color, plot=synapse_plot[c, 0], x_range=[0, 27e-3]) app.processEvents() # decay_response = response_filter(pulse_response, freq_range=[0, 20], holding_range=holding) # qc_list = pulse_qc(response_subset, baseline=2, pulse=None, plot=qc_plot) # if len(qc_list) >= sweep_threshold: # avg_trace, avg_amp, amp_sign, peak_t = get_amplitude(qc_list) # if amp_sign is '-': # continue # psp_fits = fit_psp(avg_trace, sign=amp_sign, yoffset=0, amp=avg_amp, method='leastsq', stacked = False, fit_kws={}) # grand_response[type[0]]['decay'].append(psp_fits.best_values['decay_tau']) if len(grand_response[type[0]]['trace']) == 0: continue if len(grand_response[type[0]]['trace']) > 1: grand_trace = TraceList(grand_response[type[0]]['trace']).mean() grand_trace.t0 = 0 else: grand_trace = grand_response[type[0]]['trace'][0] n_synapses = len(grand_response[type[0]]['trace']) trace_plot(grand_trace, color={'color': color, 'width': 2}, plot=synapse_plot[c, 0], x_range=[0, 27e-3], name=('%s, n = %d' % (connection_types[c], n_synapses))) synapse_plot[c, 0].hideAxis('bottom') # all_amps = np.hstack(np.asarray(grand_response[cre_type[0]]['fail_rate'])) # y, x = np.histogram(all_amps, bins=np.linspace(0, 2e-3, 40)) # synapse_plot[c, 1].plot(x, y, stepMode=True, fillLevel=0, brush='k') # synapse_plot[c, 1].setLabels(bottom=('Vm', 'V')) # synapse_plot[c, 1].setXRange(0, 2e-3) print ('%s kinetics n = %d' % (type[0], len(grand_response[type[0]]['latency']))) feature_list = (grand_response[type[0]]['amp'], grand_response[type[0]]['CV'], grand_response[type[0]]['latency'], grand_response[type[0]]['rise'])
label = pg.LabelItem('%d ms Recovery' % delta) label.setParentItem(rec_plot[t, c].vb) label.setPos(50, 0) summary_plot[c, 1].setTitle('Recovery') rec_plot[t, c].addLegend() [rec_plot[t, c].plot(ind.time_values, ind.data, pen=trace_color) for ind in rec_pass_qc[0]] [rec_plot[t, c].plot(rec.time_values, rec.data, pen=trace_color) for rec in rec_pass_qc[1]] rec_plot[t, c].plot(rec_ind_grand_trace.time_values, rec_ind_grand_trace.data, pen={'color': color, 'width': 2}, name=("n = %d" % n_synapses)) rec_plot[t, c].plot(recovery_grand_trace.time_values, recovery_grand_trace.data, pen={'color': color, 'width': 2}) rec_plot[t, c].setLabels(left=('Vm', 'V')) rec_plot[t, c].setLabels(bottom=('t', 's')) if deconv is True: rec_deconv = deconv_train(rec_pass_qc[:2]) rec_deconv_grand = TraceList(rec_deconv[0]).mean() rec_ind_deconv_grand = TraceList(rec_deconv[1]).mean() #log_rec_plt.plot(rec_deconv_grand.time_values, rec_deconv_grand.data, # pen={'color': color, 'width': 2}) rec_deconv_ind_grand2 = rec_ind_deconv_grand.copy(t0=delta + 0.2) #log_rec_plt.plot(rec_deconv_ind_grand2.time_values, rec_deconv_ind_grand2.data, # pen={'color': color, 'width': 2}) [deconv_rec_plot[t, c].plot(ind.time_values, ind.data, pen=trace_color) for ind in rec_deconv[0]] [deconv_rec_plot[t, c].plot(rec.time_values, rec.data, pen=trace_color) for rec in rec_deconv[1]] deconv_rec_plot[t, c].plot(rec_ind_deconv_grand.time_values, rec_ind_deconv_grand.data, pen={'color': color, 'width': 2}, name=("n = %d" % n_synapses)) deconv_rec_plot[t, c].plot(rec_deconv_grand.time_values, rec_deconv_grand.data, pen={'color': color, 'width': 2}) summary_plot[c, 1].setLabels(left=('Norm Amp', '')) summary_plot[c, 1].setLabels(bottom=('Pulse Number', '')) f_color = pg.hsvColor(hue=hue, sat=float(t+0.5) / len(rec_t), val=1) summary_plot[c, 1].plot(rec_amp_grand/rec_amp_grand[0], name=(' %d ms' % delta), pen=f_color, symbol=symbols[t],
def train_response_plot(expt_list, name=None, summary_plots=[None, None], color=None): grand_train = [[], []] train_plots = pg.plot() train_plots.setLabels(left=('Vm', 'V')) tau = 15e-3 lp = 1000 for expt in expt_list: for pre, post in expt.connections: if expt.cells[pre].cre_type == cre_type[0] and expt.cells[ post].cre_type == cre_type[1]: print('Processing experiment: %s' % (expt.nwb_file)) train_responses, artifact = get_response(expt, pre, post, analysis_type='train') if artifact > 0.03e-3: continue train_filter = response_filter(train_responses['responses'], freq_range=[50, 50], train=0, delta_t=250) pulse_offsets = response_filter( train_responses['pulse_offsets'], freq_range=[50, 50], train=0, delta_t=250) if len(train_filter[0]) > 5: ind_avg = TraceList(train_filter[0]).mean() rec_avg = TraceList(train_filter[1]).mean() rec_avg.t0 = 0.3 grand_train[0].append(ind_avg) grand_train[1].append(rec_avg) train_plots.plot(ind_avg.time_values, ind_avg.data) train_plots.plot(rec_avg.time_values, rec_avg.data) app.processEvents() if len(grand_train[0]) != 0: print(name + ' n = %d' % len(grand_train[0])) ind_grand_mean = TraceList(grand_train[0]).mean() rec_grand_mean = TraceList(grand_train[1]).mean() ind_grand_mean_dec = bessel_filter(exp_deconvolve(ind_grand_mean, tau), lp) train_plots.addLegend() train_plots.plot(ind_grand_mean.time_values, ind_grand_mean.data, pen={ 'color': 'g', 'width': 3 }, name=name) train_plots.plot(rec_grand_mean.time_values, rec_grand_mean.data, pen={ 'color': 'g', 'width': 3 }, name=name) train_amps = train_amp([grand_train[0], grand_train[1]], pulse_offsets, '+') if ind_grand_mean is not None: train_plots = summary_plot_train(ind_grand_mean, plot=summary_plots[0], color=color, name=(legend + ' 50 Hz induction')) train_plots = summary_plot_train(rec_grand_mean, plot=summary_plots[0], color=color) train_plots2 = summary_plot_train(ind_grand_mean_dec, plot=summary_plots[1], color=color, name=(legend + ' 50 Hz induction')) return train_plots, train_plots2, train_amps else: print("No Traces") return None
join patch_clamp_recording post_pcrec on post_pcrec.recording_id=post_rec.id join multi_patch_probe on multi_patch_probe.patch_clamp_recording_id=post_pcrec.id join recording pre_rec on stim_pulse.recording_id=pre_rec.id join sync_rec on post_rec.sync_rec_id=sync_rec.id join experiment on sync_rec.experiment_id=experiment.id where {conditions} """.format(conditions='\n and '.join(conditions)) print(query) rp = session.execute(query) recs = rp.fetchall() data = [np.load(io.BytesIO(rec[0])) for rec in recs] print("\n\nloaded %d records" % len(data)) plt = pg.plot(labels={'left': ('Vm', 'V')}) traces = TraceList() for i,x in enumerate(data): trace = Trace(x - np.median(x[:100]), sample_rate=20000) traces.append(trace) if i<100: plt.plot(trace.time_values, trace.data, pen=(255, 255, 255, 100)) avg = traces.mean() plt.plot(avg.time_values, avg.data, pen='g')
pre_base = float_mode(pre_spike.data[:int(10e-3 / pre_spike.dt)]) sweep_list['response'].append( sweep_trace.copy(data=sweep_trace.data - post_base)) sweep_list['spike'].append( pre_spike.copy(data=pre_spike.data - pre_base)) if len(sweep_list['response']) > 5: n = len(sweep_list['response']) if plot_sweeps is True: for sweep in range(n): current_sweep = sweep_list['response'][sweep] current_sweep.t0 = 0 grid[row[1], 0].plot(current_sweep.time_values, current_sweep.data, pen=sweep_color) avg_first_pulse = TraceList(sweep_list['response']).mean() avg_first_pulse.t0 = 0 avg_spike = TraceList(sweep_list['spike']).mean() avg_spike.t0 = 0 grid[row[1], 0].setLabels(left=('Vm', 'V')) grid[row[1], 0].setLabels(bottom=('t', 's')) grid[row[1], 0].setXRange(-2e-3, 27e-3) grid[row[1], 0].plot(avg_first_pulse.time_values, avg_first_pulse.data, pen={ 'color': (255, 0, 255), 'width': 2 }) grid[row[0], 0].setLabels(left=('Vm', 'V')) sweep_list['spike'][0].t0 = 0 grid[row[0], 0].plot(avg_spike.time_values, avg_spike.data, pen='k')
trace_color, plot=synapse_plot[c, 0], x_range=[0, 27e-3]) app.processEvents() # decay_response = response_filter(pulse_response, freq_range=[0, 20], holding_range=holding) # qc_list = pulse_qc(response_subset, baseline=2, pulse=None, plot=qc_plot) # if len(qc_list) >= sweep_threshold: # avg_trace, avg_amp, amp_sign, peak_t = get_amplitude(qc_list) # if amp_sign is '-': # continue # psp_fits = fit_psp(avg_trace, sign=amp_sign, yoffset=0, amp=avg_amp, method='leastsq', stacked = False, fit_kws={}) # grand_response[conn_type[0]]['decay'].append(psp_fits.best_values['decay_tau']) if len(grand_response[conn_type[0]]['trace']) == 0: continue if len(grand_response[conn_type[0]]['trace']) > 1: grand_trace = TraceList(grand_response[conn_type[0]]['trace']).mean() else: grand_trace = grand_response[conn_type[0]]['trace'][0] n_synapses = len(grand_response[conn_type[0]]['trace']) trace_plot(grand_trace, color={ 'color': color, 'width': 2 }, plot=synapse_plot[c, 0], x_range=[0, 27e-3], name=('%s, n = %d' % (connection_types[c], n_synapses))) synapse_plot[c, 0].hideAxis('bottom') # all_amps = np.hstack(np.asarray(grand_response[cre_type[0]]['fail_rate'])) # y, x = np.histogram(all_amps, bins=np.linspace(0, 2e-3, 40)) # synapse_plot[c, 1].plot(x, y, stepMode=True, fillLevel=0, brush='k')
def add_connection_plots(i, name, timestamp, pre_id, post_id): global session, win, filtered p = pg.debug.Profiler(disabled=True, delayed=False) trace_plot = win.addPlot(i, 1) trace_plots.append(trace_plot) trace_plot.setYRange(-1.4e-3, 2.1e-3) # deconv_plot = win.addPlot(i, 2) # deconv_plots.append(deconv_plot) # deconv_plot.hide() hist_plot = win.addPlot(i, 2) hist_plots.append(hist_plot) limit_plot = win.addPlot(i, 3) limit_plot.addLegend() limit_plot.setLogMode(True, False) limit_plot.addLine(y=classifier.prob_threshold) # Find this connection in the pair list idx = np.argwhere((abs(filtered['acq_timestamp'] - timestamp) < 1) & (filtered['pre_cell_id'] == pre_id) & (filtered['post_cell_id'] == post_id)) if idx.size == 0: print("not in filtered connections") return idx = idx[0, 0] p() # Mark the point in scatter plot scatter_plot.plot([background[idx]], [signal[idx]], pen='k', symbol='o', size=10, symbolBrush='r', symbolPen=None) # Plot example traces and histograms for plts in [trace_plots]: #, deconv_plots]: plt = plts[-1] plt.setXLink(plts[0]) plt.setYLink(plts[0]) plt.setXRange(-10e-3, 17e-3, padding=0) plt.hideAxis('left') plt.hideAxis('bottom') plt.addLine(x=0) plt.setDownsampling(auto=True, mode='peak') plt.setClipToView(True) hbar = pg.QtGui.QGraphicsLineItem(0, 0, 2e-3, 0) hbar.setPen(pg.mkPen(color='k', width=5)) plt.addItem(hbar) vbar = pg.QtGui.QGraphicsLineItem(0, 0, 0, 100e-6) vbar.setPen(pg.mkPen(color='k', width=5)) plt.addItem(vbar) hist_plot.setXLink(hist_plots[0]) pair = session.query( db.Pair).filter(db.Pair.id == filtered[idx]['pair_id']).all()[0] p() amps = strength_analysis.get_amps(session, pair) p() base_amps = strength_analysis.get_baseline_amps(session, pair, amps=amps, clamp_mode='ic') p() q = strength_analysis.response_query(session) p() q = q.join(strength_analysis.PulseResponseStrength) q = q.filter(strength_analysis.PulseResponseStrength.id.in_( amps['id'])) q = q.join(db.MultiPatchProbe) q = q.filter(db.MultiPatchProbe.induction_frequency < 100) # pre_cell = db.aliased(db.Cell) # post_cell = db.aliased(db.Cell) # q = q.join(db.Pair).join(db.Experiment).join(pre_cell, db.Pair.pre_cell_id==pre_cell.id).join(post_cell, db.Pair.post_cell_id==post_cell.id) # q = q.filter(db.Experiment.id==filtered[idx]['experiment_id']) # q = q.filter(pre_cell.ext_id==pre_id) # q = q.filter(post_cell.ext_id==post_id) fg_recs = q.all() p() traces = [] deconvs = [] for rec in fg_recs[:100]: result = strength_analysis.analyze_response_strength( rec, source='pulse_response', lpf=True, lowpass=2000, remove_artifacts=False, bsub=True) trace = result['raw_trace'] trace.t0 = -result['spike_time'] trace = trace - np.median(trace.time_slice(-0.5e-3, 0.5e-3).data) traces.append(trace) trace_plot.plot(trace.time_values, trace.data, pen=(0, 0, 0, 20)) trace = result['dec_trace'] trace.t0 = -result['spike_time'] trace = trace - np.median(trace.time_slice(-0.5e-3, 0.5e-3).data) deconvs.append(trace) # deconv_plot.plot(trace.time_values, trace.data, pen=(0, 0, 0, 20)) # plot average trace mean = TraceList(traces).mean() trace_plot.plot(mean.time_values, mean.data, pen={ 'color': 'g', 'width': 2 }, shadowPen={ 'color': 'k', 'width': 3 }, antialias=True) mean = TraceList(deconvs).mean() # deconv_plot.plot(mean.time_values, mean.data, pen={'color':'g', 'width': 2}, shadowPen={'color':'k', 'width': 3}, antialias=True) # add label label = pg.LabelItem(name) label.setParentItem(trace_plot) p("analyze_response_strength") # bins = np.arange(-0.0005, 0.002, 0.0001) # field = 'pos_amp' bins = np.arange(-0.001, 0.015, 0.0005) field = 'pos_dec_amp' n = min(len(amps), len(base_amps)) hist_y, hist_bins = np.histogram(base_amps[:n][field], bins=bins) hist_plot.plot(hist_bins, hist_y, stepMode=True, pen=None, brush=(200, 0, 0, 150), fillLevel=0) hist_y, hist_bins = np.histogram(amps[:n][field], bins=bins) hist_plot.plot(hist_bins, hist_y, stepMode=True, pen='k', brush=(0, 150, 150, 100), fillLevel=0) p() pg.QtGui.QApplication.processEvents() # Plot detectability analysis q = strength_analysis.baseline_query(session) q = q.join(strength_analysis.BaselineResponseStrength) q = q.filter( strength_analysis.BaselineResponseStrength.id.in_(base_amps['id'])) # q = q.limit(100) bg_recs = q.all() def clicked(sp, pts): data = pts[0].data() print("-----------------------\nclicked:", data['rise_time'], data['amp'], data['prediction'], data['confidence']) for r in data['results']: print({k: r[k] for k in classifier.features}) traces = data['traces'] plt = pg.plot() bsub = [ t.copy(data=t.data - np.median(t.time_slice(0, 1e-3).data)) for t in traces ] for t in bsub: plt.plot(t.time_values, t.data, pen=(0, 0, 0, 50)) mean = TraceList(bsub).mean() plt.plot(mean.time_values, mean.data, pen='g') # def analyze_response_strength(recs, source, dtype): # results = [] # for i,rec in enumerate(recs): # result = strength_analysis.analyze_response_strength(rec, source) # results.append(result) # return str_analysis_result_table(results) # measure background connection strength bg_results = [ strength_analysis.analyze_response_strength(rec, 'baseline') for rec in bg_recs ] bg_results = strength_analysis.str_analysis_result_table( bg_results, bg_recs) # for this example, we use background data to simulate foreground # (but this will be biased due to lack of crosstalk in background data) fg_recs = bg_recs # now measure foreground simulated under different conditions amps = 2e-6 * 2**np.arange(9) amps[0] = 0 rtimes = [1e-3, 2e-3, 4e-3, 6e-3] dt = 1 / db.default_sample_rate results = np.empty((len(amps), len(rtimes)), dtype=[('results', object), ('predictions', object), ('confidence', object), ('traces', object), ('rise_time', float), ('amp', float)]) print(" Simulating synaptic events..") cachefile = 'fig_3_cache.pkl' if os.path.exists(cachefile): cache = pickle.load(open(cachefile, 'rb')) else: cache = {} pair_key = (timestamp, pre_id, post_id) pair_cache = cache.setdefault(pair_key, {}) for j, rtime in enumerate(rtimes): new_results = False for i, amp in enumerate(amps): print( "--------------------------------------- %d/%d %d/%d \r" % (i, len(amps), j, len(rtimes)), ) result = pair_cache.get((rtime, amp)) if result is None: result = strength_analysis.simulate_connection( fg_recs, bg_results, classifier, amp, rtime) pair_cache[rtime, amp] = result new_results = True for k, v in result.items(): results[i, j][k] = v c = limit_plot.plot( amps, [np.mean(x) for x in results[:, j]['confidence']], pen=pg.intColor(j, len(rtimes) * 1.3, maxValue=150), symbol='o', antialias=True, name="%dus" % (rtime * 1e6), data=results[:, j], symbolSize=4) c.scatter.sigClicked.connect(clicked) pg.QtGui.QApplication.processEvents() if new_results: pickle.dump(cache, open(cachefile, 'wb')) pg.QtGui.QApplication.processEvents()
#analyzer = MultiPatchExperimentAnalyzer(expt.data) #pulses = analyzer.get_evoked_responses(pre_id, post_id, clamp_mode='ic', pulse_ids=[0]) analyzer = DynamicsAnalyzer(expt, pre_id, post_id, align_to='spike') # collect all first pulse responses responses = analyzer.amp_group # collect all events #responses = analyzer.all_events n_responses = len(responses) # do exponential deconvolution on all responses deconv = TraceList() grid1 = PlotGrid() grid1.set_shape(2, 1) for i in range(n_responses): r = responses.responses[i] grid1[0, 0].plot(r.time_values, r.data) filt = bessel_filter(r - np.median(r.time_slice(0, 10e-3).data), 300.) responses.responses[i] = filt dec = exp_deconvolve(r, 15e-3) baseline = np.median(dec.data[:100]) r2 = bessel_filter(dec-baseline, 300.) grid1[1, 0].plot(r2.time_values, r2.data) deconv.append(r2)
def first_pulse_plot(expt_list, name=None, summary_plot=None, color=None, scatter=0, features=False): amp_plots = pg.plot() amp_plots.setLabels(left=('Vm', 'V')) grand_response = [] avg_amps = {'amp': [], 'latency': [], 'rise': []} for expt in expt_list: if expt.connections is not None: for pre, post in expt.connections: if expt.cells[pre].cre_type == cre_type[0] and expt.cells[ post].cre_type == cre_type[1]: all_responses, artifact = get_response( expt, pre, post, analysis_type='pulse') if artifact > 0.03e-3: continue filtered_responses = response_filter( all_responses, freq_range=[0, 50], holding_range=[-68, -72], pulse=True) n_sweeps = len(filtered_responses) if n_sweeps >= 10: avg_trace, avg_amp, amp_sign, _ = get_amplitude( filtered_responses) if expt.cells[ pre].cre_type in EXCITATORY_CRE_TYPES and avg_amp < 0: continue elif expt.cells[ pre].cre_type in INHIBITORY_CRE_TYPES and avg_amp > 0: continue avg_trace.t0 = 0 avg_amps['amp'].append(avg_amp) grand_response.append(avg_trace) if features is True: psp_fits = fit_psp(avg_trace, sign=amp_sign, yoffset=0, amp=avg_amp, method='leastsq', fit_kws={}) avg_amps['latency'].append( psp_fits.best_values['xoffset'] - 10e-3) avg_amps['rise'].append( psp_fits.best_values['rise_time']) current_connection_HS = post, pre if len(expt.connections) > 1 and args.recip is True: for i, x in enumerate(expt.connections): if x == current_connection_HS: # determine if a reciprocal connection amp_plots.plot(avg_trace.time_values, avg_trace.data, pen={ 'color': 'r', 'width': 1 }) break elif x != current_connection_HS and i == len( expt.connections ) - 1: # reciprocal connection was not found amp_plots.plot(avg_trace.time_values, avg_trace.data) else: amp_plots.plot(avg_trace.time_values, avg_trace.data) app.processEvents() if len(grand_response) != 0: print(name + ' n = %d' % len(grand_response)) grand_mean = TraceList(grand_response).mean() grand_amp = np.mean(np.array(avg_amps['amp'])) grand_amp_sem = stats.sem(np.array(avg_amps['amp'])) amp_plots.addLegend() amp_plots.plot(grand_mean.time_values, grand_mean.data, pen={ 'color': 'g', 'width': 3 }, name=name) amp_plots.addLine(y=grand_amp, pen={'color': 'g'}) if grand_mean is not None: print(legend + ' Grand mean amplitude = %f +- %f' % (grand_amp, grand_amp_sem)) if features is True: feature_list = (avg_amps['amp'], avg_amps['latency'], avg_amps['rise']) labels = (['Vm', 'V'], ['t', 's'], ['t', 's']) titles = ('Amplitude', 'Latency', 'Rise time') else: feature_list = [avg_amps['amp']] labels = (['Vm', 'V']) titles = 'Amplitude' summary_plots = summary_plot_pulse(feature_list[0], labels=labels, titles=titles, i=scatter, grand_trace=grand_mean, plot=summary_plot, color=color, name=legend) return avg_amps, summary_plots else: print("No Traces") return avg_amps, None
pulse_response join stim_pulse on pulse_response.pulse_id=stim_pulse.id join recording post_rec on pulse_response.recording_id=post_rec.id join patch_clamp_recording post_pcrec on post_pcrec.recording_id=post_rec.id join multi_patch_probe on multi_patch_probe.patch_clamp_recording_id=post_pcrec.id join recording pre_rec on stim_pulse.recording_id=pre_rec.id join sync_rec on post_rec.sync_rec_id=sync_rec.id join experiment on sync_rec.experiment_id=experiment.id where {conditions} """.format(conditions='\n and '.join(conditions)) print(query) rp = session.execute(query) recs = rp.fetchall() data = [np.load(io.BytesIO(rec[0])) for rec in recs] print("\n\nloaded %d records" % len(data)) plt = pg.plot(labels={'left': ('Vm', 'V')}) traces = TraceList() for i, x in enumerate(data): trace = Trace(x - np.median(x[:100]), sample_rate=20000) traces.append(trace) if i < 100: plt.plot(trace.time_values, trace.data, pen=(255, 255, 255, 100)) avg = traces.mean() plt.plot(avg.time_values, avg.data, pen='g')
def mean(self): if len(self) == 0: return None return TraceList(self.responses).mean()
def plot_prd_ids(self, ids, source, pen=None, trace_list=None, avg=False): """Plot raw or decolvolved PulseResponse data, given IDs of records in a PulseResponseStrength table. """ with pg.BusyCursor(): if source == 'fg': q = response_query(self.session) q = q.join(PulseResponseStrength) q = q.filter(PulseResponseStrength.id.in_(ids)) traces = self.selected_fg_traces plot = self.fg_trace_plot else: q = baseline_query(self.session) q = q.join(BaselineResponseStrength) q = q.filter(BaselineResponseStrength.id.in_(ids)) traces = self.selected_bg_traces plot = self.bg_trace_plot recs = q.all() if len(recs) == 0: return for i in trace_list[:]: plot.removeItem(i) trace_list.remove(i) if pen is None: alpha = np.clip(1000 / len(recs), 30, 255) pen = (255, 255, 255, alpha) traces = [] spike_times = [] spike_values = [] for rec in recs: s = {'fg': 'pulse_response', 'bg': 'baseline'}[source] result = analyze_response_strength(rec, source=s, lpf=self.lpf_check.isChecked(), remove_artifacts=self.ar_check.isChecked(), bsub=self.bsub_check.isChecked()) if self.deconv_check.isChecked(): trace = result['dec_trace'] else: trace = result['raw_trace'] if self.bsub_check.isChecked(): trace = trace - np.median(trace.time_slice(0, 9e-3).data) if self.lpf_check.isChecked(): trace = filter.bessel_filter(trace, 500) spike_values.append(trace.value_at([result['spike_time']])[0]) if self.align_check.isChecked(): trace.t0 = -result['spike_time'] spike_times.append(0) else: spike_times.append(result['spike_time']) traces.append(trace) trace_list.append(plot.plot(trace.time_values, trace.data, pen=pen)) if avg: mean = TraceList(traces).mean() trace_list.append(plot.plot(mean.time_values, mean.data, pen='g')) trace_list[-1].setZValue(10) spike_scatter = pg.ScatterPlotItem(spike_times, spike_values, size=4, pen=None, brush=(200, 200, 0)) spike_scatter.setZValue(-100) plot.addItem(spike_scatter) trace_list.append(spike_scatter)
def add_connection_plots(i, name, timestamp, pre_id, post_id): global session, win, filtered p = pg.debug.Profiler(disabled=True, delayed=False) trace_plot = win.addPlot(i, 1) trace_plots.append(trace_plot) deconv_plot = win.addPlot(i, 2) deconv_plots.append(deconv_plot) hist_plot = win.addPlot(i, 3) hist_plots.append(hist_plot) limit_plot = win.addPlot(i, 4) limit_plot.addLegend() limit_plot.setLogMode(True, True) # Find this connection in the pair list idx = np.argwhere((abs(filtered['acq_timestamp'] - timestamp) < 1) & (filtered['pre_cell_id'] == pre_id) & (filtered['post_cell_id'] == post_id)) if idx.size == 0: print("not in filtered connections") return idx = idx[0,0] p() # Mark the point in scatter plot scatter_plot.plot([background[idx]], [signal[idx]], pen='k', symbol='o', size=10, symbolBrush='r', symbolPen=None) # Plot example traces and histograms for plts in [trace_plots, deconv_plots]: plt = plts[-1] plt.setXLink(plts[0]) plt.setYLink(plts[0]) plt.setXRange(-10e-3, 17e-3, padding=0) plt.hideAxis('left') plt.hideAxis('bottom') plt.addLine(x=0) plt.setDownsampling(auto=True, mode='peak') plt.setClipToView(True) hbar = pg.QtGui.QGraphicsLineItem(0, 0, 2e-3, 0) hbar.setPen(pg.mkPen(color='k', width=5)) plt.addItem(hbar) vbar = pg.QtGui.QGraphicsLineItem(0, 0, 0, 100e-6) vbar.setPen(pg.mkPen(color='k', width=5)) plt.addItem(vbar) hist_plot.setXLink(hist_plots[0]) pair = session.query(db.Pair).filter(db.Pair.id==filtered[idx]['pair_id']).all()[0] p() amps = strength_analysis.get_amps(session, pair) p() base_amps = strength_analysis.get_baseline_amps(session, pair) p() q = strength_analysis.response_query(session) p() q = q.join(strength_analysis.PulseResponseStrength) q = q.filter(strength_analysis.PulseResponseStrength.id.in_(amps['id'])) q = q.join(db.Recording, db.Recording.id==db.PulseResponse.recording_id).join(db.PatchClampRecording).join(db.MultiPatchProbe) q = q.filter(db.MultiPatchProbe.induction_frequency < 100) # pre_cell = db.aliased(db.Cell) # post_cell = db.aliased(db.Cell) # q = q.join(db.Pair).join(db.Experiment).join(pre_cell, db.Pair.pre_cell_id==pre_cell.id).join(post_cell, db.Pair.post_cell_id==post_cell.id) # q = q.filter(db.Experiment.id==filtered[idx]['experiment_id']) # q = q.filter(pre_cell.ext_id==pre_id) # q = q.filter(post_cell.ext_id==post_id) fg_recs = q.all() p() traces = [] deconvs = [] for rec in fg_recs[:100]: result = strength_analysis.analyze_response_strength(rec, source='pulse_response', lpf=True, lowpass=2000, remove_artifacts=False, bsub=True) trace = result['raw_trace'] trace.t0 = -result['spike_time'] trace = trace - np.median(trace.time_slice(-0.5e-3, 0.5e-3).data) traces.append(trace) trace_plot.plot(trace.time_values, trace.data, pen=(0, 0, 0, 20)) trace = result['dec_trace'] trace.t0 = -result['spike_time'] trace = trace - np.median(trace.time_slice(-0.5e-3, 0.5e-3).data) deconvs.append(trace) deconv_plot.plot(trace.time_values, trace.data, pen=(0, 0, 0, 20)) # plot average trace mean = TraceList(traces).mean() trace_plot.plot(mean.time_values, mean.data, pen={'color':'g', 'width': 2}, shadowPen={'color':'k', 'width': 3}, antialias=True) mean = TraceList(deconvs).mean() deconv_plot.plot(mean.time_values, mean.data, pen={'color':'g', 'width': 2}, shadowPen={'color':'k', 'width': 3}, antialias=True) # add label label = pg.LabelItem(name) label.setParentItem(trace_plot) p("analyze_response_strength") # bins = np.arange(-0.0005, 0.002, 0.0001) # field = 'pos_amp' bins = np.arange(-0.001, 0.015, 0.0005) field = 'pos_dec_amp' n = min(len(amps), len(base_amps)) hist_y, hist_bins = np.histogram(base_amps[:n][field], bins=bins) hist_plot.plot(hist_bins, hist_y, stepMode=True, pen=None, brush=(200, 0, 0, 150), fillLevel=0) hist_y, hist_bins = np.histogram(amps[:n][field], bins=bins) hist_plot.plot(hist_bins, hist_y, stepMode=True, pen='k', brush=(0, 150, 150, 100), fillLevel=0) p() pg.QtGui.QApplication.processEvents() # Plot detectability analysis q = strength_analysis.baseline_query(session) q = q.join(strength_analysis.BaselineResponseStrength) q = q.filter(strength_analysis.BaselineResponseStrength.id.in_(base_amps['id'])) # q = q.limit(100) bg_recs = q.all() def clicked(sp, pts): traces = pts[0].data()['traces'] print([t.amp for t in traces]) plt = pg.plot() bsub = [t.copy(data=t.data - np.median(t.time_slice(0, 1e-3).data)) for t in traces] for t in bsub: plt.plot(t.time_values, t.data, pen=(0, 0, 0, 50)) mean = TraceList(bsub).mean() plt.plot(mean.time_values, mean.data, pen='g') # first measure background a few times N = len(fg_recs) N = 50 # temporary for testing print("Testing %d trials" % N) bg_results = [] M = 500 print(" Grinding on %d background trials" % len(bg_recs)) for i in range(M): amps = base_amps.copy() np.random.shuffle(amps) bg_results.append(np.median(amps[:N]['pos_dec_amp']) / np.std(amps[:N]['pos_dec_latency'])) print(" %d/%d \r" % (i, M),) print(" done. ") print(" ", bg_results) # now measure foreground simulated under different conditions amps = 5e-6 * 2**np.arange(6) amps[0] = 0 rtimes = 1e-3 * 1.71**np.arange(4) dt = 1 / db.default_sample_rate results = np.empty((len(amps), len(rtimes)), dtype=[('pos_dec_amp', float), ('latency_stdev', float), ('result', float), ('percentile', float), ('traces', object)]) print(" Simulating synaptic events..") for j,rtime in enumerate(rtimes): for i,amp in enumerate(amps): trial_results = [] t = np.arange(0, 15e-3, dt) template = Psp.psp_func(t, xoffset=0, yoffset=0, rise_time=rtime, decay_tau=15e-3, amp=1, rise_power=2) for l in range(20): print(" %d/%d %d/%d \r" % (i,len(amps),j,len(rtimes)),) r_amps = amp * 2**np.random.normal(size=N, scale=0.5) r_latency = np.random.normal(size=N, scale=600e-6, loc=12.5e-3) fg_results = [] traces = [] np.random.shuffle(bg_recs) for k,rec in enumerate(bg_recs[:N]): data = rec.data.copy() start = int(r_latency[k] / dt) length = len(rec.data) - start rec.data[start:] += template[:length] * r_amps[k] fg_result = strength_analysis.analyze_response_strength(rec, 'baseline') fg_results.append((fg_result['pos_dec_amp'], fg_result['pos_dec_latency'])) traces.append(Trace(rec.data.copy(), dt=dt)) traces[-1].amp = r_amps[k] rec.data[:] = data # can't modify rec, so we have to muck with the array (and clean up afterward) instead fg_amp = np.array([r[0] for r in fg_results]) fg_latency = np.array([r[1] for r in fg_results]) trial_results.append(np.median(fg_amp) / np.std(fg_latency)) results[i,j]['result'] = np.median(trial_results) / np.median(bg_results) results[i,j]['percentile'] = stats.percentileofscore(bg_results, results[i,j]['result']) results[i,j]['traces'] = traces assert all(np.isfinite(results[i]['pos_dec_amp'])) print(i, results[i]['result']) print(i, results[i]['percentile']) # c = limit_plot.plot(rtimes, results[i]['result'], pen=(i, len(amps)*1.3), symbol='o', antialias=True, name="%duV"%(amp*1e6), data=results[i], symbolSize=4) # c.scatter.sigClicked.connect(clicked) # pg.QtGui.QApplication.processEvents() c = limit_plot.plot(amps, results[:,j]['result'], pen=(j, len(rtimes)*1.3), symbol='o', antialias=True, name="%dus"%(rtime*1e6), data=results[:,j], symbolSize=4) c.scatter.sigClicked.connect(clicked) pg.QtGui.QApplication.processEvents() pg.QtGui.QApplication.processEvents()