Пример #1
0
def test_ivp(x0, y0, y1, ones, net11):
    x = x0 * ones
    cond = IVP(x0, y0)
    y = cond.enforce(net11, x)
    assert torch.isclose(y, y0 * ones).all(), "y(x_0) != y_0"

    cond = IVP(x0, y0, y1)
    y = cond.enforce(net11, x)
    assert all_close(y, y0), "y(x_0) != y_0"
    assert all_close(diff(y, x), y1), "y'(x_0) != y'_0"
Пример #2
0
def test_ivp():
    x = x0 * ones
    net = FCNN(1, 1)

    cond = IVP(x0, y0)
    y = cond.enforce(net, x)
    assert torch.isclose(y, y0 * ones).all(), "y(x_0) != y_0"

    cond = IVP(x0, y0, y1)
    y = cond.enforce(net, x)
    assert all_close(y, y0), "y(x_0) != y_0"
    assert all_close(diff(y, x), y1), "y'(x_0) != y'_0"
Пример #3
0
def test_ibvp_1d():
    t0, t1 = random.random(), random.random()

    u00, u01, u10, u11 = [random.random() for _ in range(4)]

    # set the initial condition ut0(x) = u(x, t0)
    net_ut0 = FCNN(1, 1)
    cond_ut0 = DirichletBVP(x0, u00, x1, u10)
    ut0 = lambda x: cond_ut0.enforce(net_ut0, x)

    # set the Dirichlet boundary conditions g(t) = u(x0, t) and h(t) = u(x1, t)
    net_g, net_h = FCNN(1, 1), FCNN(1, 1)
    cond_g = IVP(t0, u00)
    cond_h = IVP(t0, u10)
    g = lambda t: cond_g.enforce(net_g, t)
    h = lambda t: cond_h.enforce(net_h, t)

    # set the Neumann boundary conditions p(t) = u'_x(x0, t) and q(t) = u'_x(x1, t)
    x = x0 * ones
    p0 = diff(ut0(x), x)[0, 0].item()
    x = x1 * ones
    q0 = diff(ut0(x), x)[0, 0].item()
    p1, q1 = random.random(), random.random()
    net_p, net_q = FCNN(1, 1), FCNN(1, 1)
    cond_p = DirichletBVP(t0, p0, t1, p1)
    cond_q = DirichletBVP(t0, q0, t1, q1)
    p = lambda t: cond_p.enforce(net_p, t)
    q = lambda t: cond_q.enforce(net_q, t)

    # initialize a random network
    net = FCNN(2, 1)

    # test Dirichlet-Dirichlet condition
    condition = IBVP1D(x0, x1, t0, ut0, x_min_val=g, x_max_val=h)
    x = torch.linspace(x0, x1, N_SAMPLES, requires_grad=True).view(-1, 1)
    t = t0 * ones
    assert all_close(condition.enforce(net, x, t),
                     ut0(x)), "initial condition not satisfied"
    x = x0 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(condition.enforce(net, x, t),
                     g(t)), "left Dirichlet BC not satisfied"
    x = x1 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(condition.enforce(net, x, t),
                     h(t)), "right Dirichlet BC not satisfied"

    # test Dirichlet-Neumann condition
    condition = IBVP1D(x0, x1, t0, ut0, x_min_val=g, x_max_prime=q)
    x = torch.linspace(x0, x1, N_SAMPLES, requires_grad=True).view(-1, 1)
    t = t0 * ones
    assert all_close(condition.enforce(net, x, t),
                     ut0(x)), "initial condition not satisfied"
    x = x0 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(condition.enforce(net, x, t),
                     g(t)), "left Dirichlet BC not satisfied"
    x = x1 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(diff(condition.enforce(net, x, t), x),
                     q(t)), "right Neumann BC not satisfied"

    # test Neumann-Dirichlet condition
    condition = IBVP1D(x0, x1, t0, ut0, x_min_prime=p, x_max_val=h)
    x = torch.linspace(x0, x1, N_SAMPLES, requires_grad=True).view(-1, 1)
    t = t0 * ones
    assert all_close(condition.enforce(net, x, t),
                     ut0(x)), "initial condition not satisfied"
    x = x0 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(diff(condition.enforce(net, x, t), x),
                     p(t)), "left Neumann BC not satisfied"
    x = x1 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(condition.enforce(net, x, t),
                     h(t)), "right Dirichlet BC not satisfied"

    # test Neumann-Neumann condition
    condition = IBVP1D(x0, x1, t0, ut0, x_min_prime=p, x_max_prime=q)
    x = torch.linspace(x0, x1, N_SAMPLES, requires_grad=True).view(-1, 1)
    t = t0 * ones
    assert all_close(condition.enforce(net, x, t),
                     ut0(x)), "initial condition not satisfied"
    x = x0 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(diff(condition.enforce(net, x, t), x),
                     p(t)), "left Neumann BC not satisfied"
    x = x1 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(diff(condition.enforce(net, x, t), x),
                     q(t)), "right Neumann BC not satisfied"

    # test unimplemented combination of conditions
    with raises(NotImplementedError):
        IBVP1D(
            t_min=0,
            t_min_val=lambda x: 0,
            x_min=0,
            x_min_val=None,
            x_min_prime=None,
            x_max=1,
            x_max_val=None,
            x_max_prime=None,
        )
    with raises(NotImplementedError):
        IBVP1D(
            t_min=0,
            t_min_val=lambda x: 0,
            x_min=0,
            x_min_val=lambda t: 0,
            x_min_prime=lambda t: 0,
            x_max=1,
            x_max_val=None,
            x_max_prime=None,
        )
    with raises(NotImplementedError):
        IBVP1D(
            t_min=0,
            t_min_val=lambda x: 0,
            x_min=0,
            x_min_val=None,
            x_min_prime=lambda t: 0,
            x_max=1,
            x_max_val=None,
            x_max_prime=None,
        )