Пример #1
0
def show_scales_info(info):
    total_size = 0
    total_chunks = 0
    total_directories = 0
    dtype = np.dtype(info["data_type"]).newbyteorder("<")
    num_channels = info["num_channels"]
    for scale in info["scales"]:
        scale_name = scale["key"]
        size = scale["size"]
        for chunk_size in scale["chunk_sizes"]:
            size_in_chunks = [(s - 1) // cs + 1
                              for s, cs in zip(size, chunk_size)]
            num_chunks = np.prod(size_in_chunks)
            num_directories = size_in_chunks[0] * (1 + size_in_chunks[1])
            size_bytes = np.prod(size) * dtype.itemsize * num_channels
            print(
                "Scale {}, chunk size {}:"
                " {:,d} chunks, {:,d} directories, raw uncompressed size {}B".
                format(scale_name, chunk_size, num_chunks, num_directories,
                       readable_count(size_bytes)))
            total_size += size_bytes
            total_chunks += num_chunks
            total_directories += num_directories
    print("---")
    print("Total: {:,d} chunks, {:,d} directories, raw uncompressed size {}B".
          format(total_chunks, total_directories, readable_count(total_size)))
def slices_to_raw_chunks(slice_filename_lists,
                         dest_url,
                         input_orientation,
                         options={}):
    """Convert a list of 2D slices to Neuroglancer pre-computed chunks.

    :param dict info: the JSON dictionary that describes the dataset for
        Neuroglancer. Only the information from the first scale is used.
    :param list slice_filename_lists: a list of lists of filenames. Files from
        each inner list are read as 2D images and concatenated along the third
        axis. Blocks from the outer list are concatenated along a fourth axis,
        representing the image channels.
    :param tuple input_axis_inversions: a 3-tuple in (column, row, slice)
        order. Each value must be 1 (preserve orientation along the axis) or -1
        (invert orientation along the axis).
    :param tuple input_axis_permutation: a 3-tuple in (column, row, slice)
      order. Each value is 0 for X (L-R axis), 1 for Y (A-P axis), 2 for Z (I-S
      axis).
    """
    accessor = neuroglancer_scripts.accessor.get_accessor_for_url(
        dest_url, options)
    pyramid_writer = precomputed_io.get_IO_for_existing_dataset(
        accessor, encoder_options=options)
    info = pyramid_writer.info

    assert len(info["scales"][0]["chunk_sizes"]) == 1  # more not implemented
    chunk_size = info["scales"][0]["chunk_sizes"][0]  # in RAS order (X, Y, Z)
    size = info["scales"][0]["size"]  # in RAS order (X, Y, Z)
    key = info["scales"][0]["key"]
    dtype = np.dtype(info["data_type"]).newbyteorder("<")
    num_channels = info["num_channels"]

    input_axis_permutation = tuple(AXIS_PERMUTATION_FOR_RAS[a]
                                   for a in input_orientation)
    input_axis_inversions = tuple(AXIS_INVERSION_FOR_RAS[a]
                                  for a in input_orientation)

    # Here x, y, and z refer to the data orientation in output chunks (which
    # should correspond to RAS+ anatomical axes). For the data orientation in
    # input slices the terms (column (index along image width), row (index
    # along image height), slice) are used.

    # permutation_to_input is a 3-tuple in RAS (X, Y, Z) order.
    # Each value is 0 column, 1 for row, 2 for slice.
    permutation_to_input = invert_permutation(input_axis_permutation)

    # input_size and input_chunk_size are in (column, row, slice) order.
    input_size = permute(size, input_axis_permutation)
    input_chunk_size = permute(chunk_size, input_axis_permutation)

    for filename_list in slice_filename_lists:
        if len(filename_list) != input_size[2]:
            raise ValueError("{} slices found where {} were expected".format(
                len(filename_list), input_size[2]))

    for slice_chunk_idx in trange(
        (input_size[2] - 1) // input_chunk_size[2] + 1,
            desc="converting slice groups",
            leave=True,
            unit="slice groups"):
        first_slice_in_order = input_chunk_size[2] * slice_chunk_idx
        last_slice_in_order = min(input_chunk_size[2] * (slice_chunk_idx + 1),
                                  input_size[2])

        if input_axis_inversions[2] == -1:
            first_slice = input_size[2] - first_slice_in_order - 1
            last_slice = input_size[2] - last_slice_in_order - 1
        else:
            first_slice = first_slice_in_order
            last_slice = last_slice_in_order
        slice_slicing = np.s_[first_slice:last_slice:input_axis_inversions[2]]
        tqdm.write("Reading slices {0} to {1} ({2}B memory needed)... ".format(
            first_slice, last_slice - input_axis_inversions[2],
            readable_count(input_size[0] * input_size[1] *
                           (last_slice_in_order - first_slice_in_order + 1) *
                           num_channels * dtype.itemsize)))

        def load_z_stack(slice_filenames):
            # Loads the data in [slice, row, column] C-contiguous order
            block = skimage.io.concatenate_images(
                skimage.io.imread(str(filename))
                for filename in slice_filenames[slice_slicing])
            assert block.shape[2] == input_size[0]  # check slice width
            assert block.shape[1] == input_size[1]  # check slice height
            if block.ndim == 4:
                # Scikit-image loads multi-channel (e.g. RGB) images in [slice,
                # row, column, channel] order, while Neuroglancer expects
                # channel to come first (in C-contiguous indexing).
                block = np.moveaxis(block, (3, 0, 1, 2), (0, 1, 2, 3))
            elif block.ndim == 3:
                block = block[np.newaxis, :, :, :]
            else:
                raise ValueError(
                    "block has unexpected dimensionality (ndim={})".format(
                        block.ndim))
            return block

        # Concatenate all channels from different directories
        block = np.concatenate([
            load_z_stack(filename_list)
            for filename_list in slice_filename_lists
        ],
                               axis=0)
        assert block.shape[0] == num_channels

        # Flip and permute axes to go from input (channel, slice, row, column)
        # to Neuroglancer (channel, Z, Y, X)
        block = block[:, :, ::input_axis_inversions[1], ::
                      input_axis_inversions[0]]
        block = np.moveaxis(block, (3, 2, 1),
                            (3 - a for a in input_axis_permutation))
        # equivalent: np.transpose(block, axes=([0] + [3 - a for a in
        # reversed(invert_permutation(input_axis_permutation))]))

        chunk_dtype_transformer = get_chunk_dtype_transformer(
            block.dtype, dtype)

        progress_bar = tqdm(
            total=(((input_size[1] - 1) // input_chunk_size[1] + 1) *
                   ((input_size[0] - 1) // input_chunk_size[0] + 1)),
            desc="writing chunks",
            unit="chunks",
            leave=False)

        for row_chunk_idx in range((input_size[1] - 1) // input_chunk_size[1] +
                                   1):
            row_slicing = np.s_[input_chunk_size[1] * row_chunk_idx:min(
                input_chunk_size[1] * (row_chunk_idx + 1), input_size[1])]
            for column_chunk_idx in range((input_size[0] - 1) //
                                          input_chunk_size[0] + 1):
                column_slicing = np.s_[input_chunk_size[0] *
                                       column_chunk_idx:min(
                                           input_chunk_size[0] *
                                           (column_chunk_idx +
                                            1), input_size[0])]

                input_slicing = (column_slicing, row_slicing, np.s_[:])
                x_slicing, y_slicing, z_slicing = permute(
                    input_slicing, permutation_to_input)
                chunk = block[:, z_slicing, y_slicing, x_slicing]

                # This variable represents the coordinates with real slice
                # numbers, instead of within-block slice numbers.
                input_coords = ((column_slicing.start, column_slicing.stop),
                                (row_slicing.start, row_slicing.stop),
                                (first_slice_in_order, last_slice_in_order))
                x_coords, y_coords, z_coords = permute(input_coords,
                                                       permutation_to_input)
                assert chunk.size == ((x_coords[1] - x_coords[0]) *
                                      (y_coords[1] - y_coords[0]) *
                                      (z_coords[1] - z_coords[0]) *
                                      num_channels)
                chunk_coords = (x_coords[0], x_coords[1], y_coords[0],
                                y_coords[1], z_coords[0], z_coords[1])
                pyramid_writer.write_chunk(
                    chunk_dtype_transformer(chunk, preserve_input=False), key,
                    chunk_coords)
                progress_bar.update()
        # free up memory before reading next block (prevent doubled memory
        # usage)
        del block