Пример #1
0
def test_events_plot():

    signal = np.cos(np.linspace(start=0, stop=20, num=1000))
    events = nk.events_find(signal)
    data = nk.events_plot(events, signal, show=False)
    assert len(data["Event_Onset"]) == 1000

    # Different events
    events1 = events["onset"]
    events2 = np.linspace(0, len(signal), 8)
    nk.events_plot([events1, events2], signal)
    fig = plt.gcf()

    for ax in fig.get_axes():
        handles, labels = ax.get_legend_handles_labels()
    assert len(handles) == len(events1) + len(events2) + 1
    assert len(labels) == len(handles)

    plt.close(fig)

    # Different conditions
    events = nk.events_find(signal, event_conditions=["A", "B", "A", "B"])
    nk.events_plot(events, signal)
    fig = plt.gcf()

    for ax in fig.get_axes():
        handles, labels = ax.get_legend_handles_labels()
    assert len(handles) == len(events) + 1
    assert len(labels) == len(handles)

    plt.close(fig)
Пример #2
0
def helper_plot(attribute, ecg_characteristics, test_data):
    peaks = [ecg_characteristics[attribute], test_data[attribute]]
    print("0: computed\n1: data")
    ecg = test_data["ecg"]
    nk.events_plot(peaks, ecg)
    plt.title(attribute)
    plt.show()
Пример #3
0
def Get_R_Peaks(ecg_signal):
    # Extract R-peak locations from ecg signal file
    print(
        "========          Retrieving R Peaks of QRS complex         ========")
    _, rpeaks = nk.ecg_peaks(ecg_signal, sampling_rate=3000)

    #Print to console
    for key in rpeaks:
        print(key, ' : ', rpeaks[key])
    print()

    # Visualize R-peaks in ECG signal **for Jupyter Notebook
    plot_Rpeak_Signal = nk.events_plot(rpeaks['ECG_R_Peaks'], ecg_signal)
    plot_Rpeak_Signal.savefig("rpeaks_signal", dpi=300)

    # Visual R-peak locations for first 5 5 R-peaks  **for Jupyter Notebook
    plot_Rpeak_Head = nk.events_plot(rpeaks['ECG_R_Peaks'][:5],
                                     ecg_signal[:20000])
    plot_Rpeak_Head.savefig("rpeaks_head", dpi=300)
    return rpeaks
Пример #4
0
def Get_TPQS_Peaks(ecg_signal, rpeaks):
    # Delineate ECG signal to get TPQS peaks
    print(
        "=======   Using DWT to retrieve TPQS Peaks and On/Offsets   ========")
    dwt_sig, waves_dwt_peak = nk.ecg_delineate(ecg_signal,
                                               rpeaks,
                                               sampling_rate=3000,
                                               method="dwt",
                                               show=True,
                                               show_type="all")

    #Print to console
    for key in waves_dwt_peak:
        print(key, ' : ', waves_dwt_peak[key])

    def_sig, waves_peak = nk.ecg_delineate(ecg_signal,
                                           rpeaks,
                                           sampling_rate=3000,
                                           show_type="peaks")

    # Visualize the T-peaks, P-peaks, Q-peaks and S-peaks  **for JupyterNotebook
    plot_TPQS_Signal = nk.events_plot([
        waves_peak['ECG_T_Peaks'], waves_peak['ECG_P_Peaks'],
        waves_peak['ECG_Q_Peaks'], waves_peak['ECG_S_Peaks']
    ], ecg_signal)
    plot_TPQS_Signal.savefig("TPQS_signal", dpi=300)

    # Zooming into the first 3 R-peaks, with focus on
    # T_peaks, P-peaks, Q-peaks and S-peaks  **for JupyterNotebook
    plot_TPQS_Head = nk.events_plot([
        waves_peak['ECG_T_Peaks'][:3], waves_peak['ECG_P_Peaks'][:3],
        waves_peak['ECG_Q_Peaks'][:3], waves_peak['ECG_S_Peaks'][:3]
    ], ecg_signal[:12500])
    plot_TPQS_Head.savefig("TPQS_head", dpi=300)

    # Delineate the ECG signal and visualizing all peaks of ECG complexes
    _, waves_peak = nk.ecg_delineate(ecg_signal,
                                     rpeaks,
                                     sampling_rate=3000,
                                     show=True,
                                     show_type='peaks')

    # Delineate the ECG signal and visualizing all P-peaks boundaries
    signal_peak, waves_peak = nk.ecg_delineate(ecg_signal,
                                               rpeaks,
                                               sampling_rate=3000,
                                               show=True,
                                               show_type='bounds_P')

    # Delineate the ECG signal and visualizing all T-peaks boundaries
    signal_peaj, waves_peak = nk.ecg_delineate(ecg_signal,
                                               rpeaks,
                                               sampling_rate=3000,
                                               show=True,
                                               show_type='bounds_T')

    #Print to Console
    for key in waves_peak:
        if (key == 'ECG_Q_Peaks' or key == 'ECG_S_Peaks'):
            print(key, ' : ', waves_peak[key])
    print()

    return waves_dwt_peak, waves_peak
Пример #5
0
def test_events_plot():

    signal = np.cos(np.linspace(start=0, stop=20, num=1000))
    events = nk.events_find(signal)
    data = nk.events_plot(events, signal, show=False)
    assert len(data['Event_Onset']) == 1000