Пример #1
0
                lambda x: torch.mean(F.relu(-x + dxudmin)),
                weight=args.Q_con_fdu,
                name='dist_influence_lb')
            disturbances_max_influence_ub = Objective(
                [f'fD_dynamics'],
                lambda x: torch.mean(F.relu(x - dxudmax)),
                weight=args.Q_con_fdu,
                name='dist_influence_ub')
            constraints += [
                disturbances_max_influence_lb, disturbances_max_influence_ub
            ]

    ##########################################
    ########## OPTIMIZE SOLUTION ############
    ##########################################
    model = Problem(objectives, constraints, components).to(device)
    optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr)
    visualizer = VisualizerOpen(dataset,
                                dynamics_model,
                                args.verbosity,
                                args.savedir,
                                training_visuals=args.train_visuals,
                                trace_movie=args.trace_movie)
    # simulator = OpenLoopSimulator(model=model, dataset=dataset, eval_sim=not args.skip_eval_sim)
    simulator = MHOpenLoopSimulator(model=model,
                                    dataset=dataset,
                                    eval_sim=not args.skip_eval_sim)
    trainer = Trainer(model,
                      dataset,
                      optimizer,
                      logger=logger,
Пример #2
0
        args.nsteps,
        dynamics_model.fy.out_features,
        xmax=(0.8, 0.7),
        xmin=0.2,
        min_period=1,
        max_period=20,
        name="Y_ctrl_",
    )
    noise_generator = NoiseGenerator(
        ratio=0.05, keys=["Y_pred_dynamics"], name="_noise"
    )

    objectives, constraints = get_objective_terms(args, policy)
    model = Problem(
        objectives,
        constraints,
        [signal_generator, estimator, policy, dynamics_model],
    )
    model = model.to(device)

    # train only policy component
    freeze_weight(model, module_names=args.freeze)
    unfreeze_weight(model, module_names=args.unfreeze)
    optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr)

    plot_keys = ["Y_pred", "U_pred"]  # variables to be plotted
    visualizer = VisualizerClosedLoop(
        dataset, policy, plot_keys, args.verbosity, savedir=args.savedir
    )

    policy.input_keys[0] = "Yp"  # hack for policy input key compatibility w/ simulator
Пример #3
0
    # observation_lower_bound_penalty = Objective(['Y_pred_dynamics_noise', 'Y_minf'],
    #                                             lambda x, xmin: torch.mean(F.relu(-x[:, :, :1] + xmin)),
    #                                             weight=args.Q_con_y, name='observation_lower_bound').to(device)
    # observation_upper_bound_penalty = Objective(['Y_pred_dynamics_noise', 'Y_maxf'],
    #                                             lambda x, xmax: torch.mean(F.relu(x[:, :, :1] - xmax)),
    #                                             weight=args.Q_con_y, name='observation_upper_bound').to(device)


    objectives = [regularization, reference_loss]
    constraints = [observation_lower_bound_penalty, observation_upper_bound_penalty,
                   inputs_lower_bound_penalty, inputs_upper_bound_penalty]

    ##########################################
    ########## OPTIMIZE SOLUTION ############
    ##########################################
    model = Problem(objectives, constraints, components).to(device)
    freeze_weight(model, module_names=args.freeze)
    unfreeze_weight(model, module_names=args.unfreeze)
    optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr)
    plot_keys = ['Y_pred', 'U_pred', 'x0_estim']  # variables to be plotted
    visualizer = VisualizerClosedLoop(dataset, policy, plot_keys, args.verbosity, savedir=args.savedir)
    emulator = dynamics_model
    # TODO: hacky solution for policy input keys compatibility with simulator
    policy.input_keys[0] = 'Yp'
    simulator = ClosedLoopSimulator(model=model, dataset=dataset, emulator=emulator, policy=policy)
    trainer = Trainer(model, dataset, optimizer, logger=logger, visualizer=visualizer,
                      simulator=simulator, epochs=args.epochs,
                      patience=args.patience, warmup=args.warmup)
    best_model = trainer.train()
    trainer.evaluate(best_model)
    logger.log_metrics({'alive': 0.0})
Пример #4
0
    get_parser
)

if __name__ == "__main__":
    args = get_parser().parse_args()
    print({k: str(getattr(args, k)) for k in vars(args) if getattr(args, k)})
    device = f"cuda:{args.gpu}" if args.gpu is not None else "cpu"

    logger = get_logger(args)
    dataset = load_dataset(args, device, "openloop")
    print(dataset.dims)

    estimator, dynamics_model = get_model_components(args, dataset)
    objectives, constraints = get_objective_terms(args, dataset, estimator, dynamics_model)

    model = Problem(objectives, constraints, [estimator, dynamics_model])
    model = model.to(device)

    simulator = OpenLoopSimulator(model=model, dataset=dataset, eval_sim=not args.skip_eval_sim)
    optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr)
    trainer = Trainer(
        model,
        dataset,
        optimizer,
        logger=logger,
        simulator=simulator,
        epochs=args.epochs,
        eval_metric=args.eval_metric,
        patience=args.patience,
        warmup=args.warmup,
    )