Пример #1
0
def create_olm_network():
    """Create the network

    :returns: name of network nml file
    """
    net_doc = NeuroMLDocument(id="network", notes="OLM cell network")
    net_doc_fn = "olm_example_net.nml"
    net_doc.includes.append(IncludeType(href=create_olm_cell()))
    # Create a population: convenient to create many cells of the same type
    pop = Population(id="pop0",
                     notes="A population for our cell",
                     component="olm",
                     size=1,
                     type="populationList")
    pop.instances.append(Instance(id=1, location=Location(0., 0., 0.)))
    # Input
    pulsegen = PulseGenerator(id="pg_olm",
                              notes="Simple pulse generator",
                              delay="100ms",
                              duration="100ms",
                              amplitude="0.08nA")

    exp_input = ExplicitInput(target="pop0[0]", input="pg_olm")

    net = Network(id="single_olm_cell_network",
                  note="A network with a single population")
    net_doc.pulse_generators.append(pulsegen)
    net.explicit_inputs.append(exp_input)
    net.populations.append(pop)
    net_doc.networks.append(net)

    pynml.write_neuroml2_file(nml2_doc=net_doc,
                              nml2_file_name=net_doc_fn,
                              validate=True)
    return net_doc_fn
    def create_models(self):

        self.generic_cell = IafCell(id="generic_iaf_cell", 
                                    C =                 self.get_bioparameter("iaf_C").value,
                                    thresh =            self.get_bioparameter("iaf_thresh").value,
                                    reset =             self.get_bioparameter("iaf_reset").value,
                                    leak_conductance =  self.get_bioparameter("iaf_conductance").value,
                                    leak_reversal =     self.get_bioparameter("iaf_leak_reversal").value)


        self.exc_syn = ExpTwoSynapse(id="exc_syn",
                                gbase =         self.get_bioparameter("chem_exc_syn_gbase").value,
                                erev =          self.get_bioparameter("chem_exc_syn_erev").value,
                                tau_decay =     self.get_bioparameter("chem_exc_syn_decay").value,
                                tau_rise =      self.get_bioparameter("chem_exc_syn_rise").value)


        self.inh_syn = ExpTwoSynapse(id="inh_syn",
                                gbase =         self.get_bioparameter("chem_inh_syn_gbase").value,
                                erev =          self.get_bioparameter("chem_inh_syn_erev").value,
                                tau_decay =     self.get_bioparameter("chem_inh_syn_decay").value,
                                tau_rise =      self.get_bioparameter("chem_inh_syn_rise").value)

        self.elec_syn = ExpTwoSynapse(id="elec_syn",
                                gbase =         self.get_bioparameter("elec_syn_gbase").value,
                                erev =          self.get_bioparameter("elec_syn_erev").value,
                                tau_decay =     self.get_bioparameter("elec_syn_decay").value,
                                tau_rise =      self.get_bioparameter("elec_syn_rise").value)


        self.offset_current = PulseGenerator(id="offset_current",
                                delay= self.get_bioparameter("unphysiological_offset_current_del").value,
                                duration= self.get_bioparameter("unphysiological_offset_current_dur").value,
                                amplitude= self.get_bioparameter("unphysiological_offset_current").value)
Пример #3
0
 def create_offset(self):
     self.offset_current = PulseGenerator(
         id="offset_current",
         delay=self.get_bioparameter(
             "unphysiological_offset_current_del").value,
         duration=self.get_bioparameter(
             "unphysiological_offset_current_dur").value,
         amplitude=self.get_bioparameter(
             "unphysiological_offset_current").value)
Пример #4
0
def run():
    ########################   Build the network   ####################################
    
    nml_doc = NeuroMLDocument(id="IafNet")
    
    IaFCell0 = IaFCell(id="iaf0", C="1.0 nF", thresh = "-50mV", reset="-65mV", leak_conductance="10 nS", leak_reversal="-65mV")
    nml_doc.iaf_cells.append(IaFCell0)
    
    IaFCell1 = IaFCell(id="iaf1", C="1.0 nF", thresh = "-50mV", reset="-65mV", leak_conductance="20 nS", leak_reversal="-65mV")
    nml_doc.iaf_cells.append(IaFCell1)
    
    syn0 = ExpOneSynapse(id="syn0", gbase="65nS", erev="0mV", tau_decay="3ms")
    nml_doc.exp_one_synapses.append(syn0)
    
    
    net = Network(id="IafNet")
    nml_doc.networks.append(net)
    
    size0 = 5
    pop0 = Population(id="IafPop0", component=IaFCell0.id, size=size0)
    net.populations.append(pop0)
    
    size1 = 5
    pop1 = Population(id="IafPop1", component=IaFCell0.id, size=size1)
    net.populations.append(pop1)
    
    prob_connection = 0.5
    
    for pre in range(0,size0):
    
        pg = PulseGenerator(id="pulseGen_%i"%pre, delay="0ms", duration="100ms", amplitude="%f nA"%(0.1*random()))
        nml_doc.pulse_generators.append(pg)
    
        net.explicit_inputs.append(ExplicitInput(target="%s[%i]"%(pop0.id,pre), input=pg.id))
    
        for post in range(0,size1):
            # fromxx is used since from is Python keyword
            if random() <= prob_connection:
                net.synaptic_connections.append(SynapticConnection(from_="%s[%i]"%(pop0.id,pre), synapse=syn0.id, to="%s[%i]"%(pop1.id,post)))
    
    
    nml_file = 'tmp/testnet.nml'
    writers.NeuroMLWriter.write(nml_doc, nml_file)
    

    print("Written network file to: "+nml_file)


    ###### Validate the NeuroML ######    

    from utils import validateNeuroML2

    validateNeuroML2(nml_file)
Пример #5
0
    def create_offsetcurrent_concentrationmodel(self):

        self.offset_current = PulseGenerator(id="offset_current",
                                delay=self.get_bioparameter("unphysiological_offset_current_del").value,
                                duration=self.get_bioparameter("unphysiological_offset_current_dur").value,
                                amplitude=self.get_bioparameter("unphysiological_offset_current").value)

    
        self.concentration_model = FixedFactorConcentrationModel(id="CaPool",
                                            ion="ca",
                                            resting_conc="0 mM",
                                            decay_constant=self.get_bioparameter("ca_conc_decay_time").value,
                                            rho=self.get_bioparameter("ca_conc_rho").value)
Пример #6
0
def add_new_input(nml_doc, cell, delay, duration, amplitude, params):

    stim = PulseGenerator(id="stim_" + cell,
                          delay=delay,
                          duration=duration,
                          amplitude=amplitude)

    nml_doc.pulse_generators.append(stim)

    populations_without_location = isinstance(params.elec_syn, GapJunction)

    target = "%s/0/%s" % (cell, params.generic_cell.id)
    if populations_without_location:
        target = "%s[0]" % (cell)
    exp_input = ExplicitInput(target=target, input=stim.id)

    nml_doc.networks[0].explicit_inputs.append(exp_input)
Пример #7
0
def add_new_input(nml_doc, cell, delay, duration, amplitude, params):
    
    stim = PulseGenerator(id="stim_"+cell, delay=delay, duration=duration, amplitude=amplitude)
    
    nml_doc.pulse_generators.append(stim)
    
    
    target = get_cell_id_string(cell, params)
        
    input_list = InputList(id="Input_%s_%s"%(cell,stim.id),
                         component=stim.id,
                         populations='%s'%cell)

    input_list.input.append(Input(id=0, 
                  target=target, 
                  destination="synapses"))
                  
    nml_doc.networks[0].input_lists.append(input_list)
Пример #8
0
def add_new_input(nml_doc, cell, delay, duration, amplitude, params):
    i = 1
    for stim in nml_doc.pulse_generators:
        if stim.id.startswith("%s_%s" % ("stim", cell)):
            i += 1
    id = "%s_%s_%s" % ("stim", cell, i)
    stim = PulseGenerator(id=id, delay=delay, duration=duration, amplitude=amplitude)
    nml_doc.pulse_generators.append(stim)

    target = get_cell_id_string(cell, params, muscle=is_muscle(cell))

    input_list = InputList(id="Input_%s_%s"%(cell,stim.id),
                           component=stim.id,
                           populations='%s'%cell)

    input_list.input.append(Input(id=0,
                                  target=target,
                                  destination="synapses"))

    nml_doc.networks[0].input_lists.append(input_list)
Пример #9
0
def add_new_input(nml_doc, cell, delay, duration, amplitude, params):
    
    stim = PulseGenerator(id="stim_"+cell, delay=delay, duration=duration, amplitude=amplitude)
    
    nml_doc.pulse_generators.append(stim)
    
    populations_without_location = False # isinstance(params.elec_syn, GapJunction)
    
    target ="../%s/0/%s"%(cell, params.generic_cell.id)
    if populations_without_location:
        target ="%s[0]"%(cell)
        
    input_list = InputList(id="Input_%s_%s"%(cell,stim.id),
                         component=stim.id,
                         populations='%s'%cell)

    input_list.input.append(Input(id=0, 
                  target=target, 
                  destination="synapses"))
                  
    nml_doc.networks[0].input_lists.append(input_list)
    def create_models(self):

        self.generic_cell = IafActivityCell(
            id="generic_iaf_cell",
            C=self.get_bioparameter("iaf_C").value,
            thresh=self.get_bioparameter("iaf_thresh").value,
            reset=self.get_bioparameter("iaf_reset").value,
            leak_conductance=self.get_bioparameter("iaf_conductance").value,
            leak_reversal=self.get_bioparameter("iaf_leak_reversal").value,
            tau1=self.get_bioparameter("iaf_tau1").value)

        self.exc_syn = GradedSynapse(
            id="exc_syn",
            conductance=self.get_bioparameter("exc_syn_conductance").value,
            delta=self.get_bioparameter("exc_syn_delta").value,
            Vth=self.get_bioparameter("exc_syn_vth").value,
            erev=self.get_bioparameter("exc_syn_erev").value,
            k=self.get_bioparameter("exc_syn_k").value)

        self.inh_syn = GradedSynapse(
            id="inh_syn",
            conductance=self.get_bioparameter("inh_syn_conductance").value,
            delta=self.get_bioparameter("inh_syn_delta").value,
            Vth=self.get_bioparameter("inh_syn_vth").value,
            erev=self.get_bioparameter("inh_syn_erev").value,
            k=self.get_bioparameter("inh_syn_k").value)

        self.elec_syn = GapJunction(
            id="elec_syn",
            conductance=self.get_bioparameter("elec_syn_gbase").value)

        self.offset_current = PulseGenerator(
            id="offset_current",
            delay=self.get_bioparameter(
                "unphysiological_offset_current_del").value,
            duration=self.get_bioparameter(
                "unphysiological_offset_current_dur").value,
            amplitude=self.get_bioparameter(
                "unphysiological_offset_current").value)
Пример #11
0
    id="izh2007RS0", v0="-60mV", C="100pF", k="0.7nS_per_mV", vr="-60mV",
    vt="-40mV", vpeak="35mV", a="0.03per_ms", b="-2nS", c="-50.0mV", d="100pA")
nml_doc.izhikevich2007_cells.append(izh0)

# Create a network and add it to the model
net = Network(id="IzhNet")
nml_doc.networks.append(net)

# Create a population of defined cells and add it to the model
size0 = 1
pop0 = Population(id="IzhPop0", component=izh0.id, size=size0)
net.populations.append(pop0)

# Define an external stimulus and add it to the model
pg = PulseGenerator(
    id="pulseGen_%i" % 0, delay="0ms", duration="1000ms",
    amplitude="0.07 nA"
)
nml_doc.pulse_generators.append(pg)
exp_input = ExplicitInput(target="%s[%i]" % (pop0.id, 0), input=pg.id)
net.explicit_inputs.append(exp_input)

# Write the NeuroML model to a file
nml_file = 'izhikevich2007_single_cell_network.nml'
writers.NeuroMLWriter.write(nml_doc, nml_file)
print("Written network file to: " + nml_file)

# Validate the NeuroML model against the NeuroML schema
validate_neuroml2(nml_file)

################################################################################
## The NeuroML file has now been created and validated. The rest of the code
Пример #12
0
    def create_models(self):

        self.generic_cell = Cell(id = "GenericCell")

        morphology = Morphology()
        morphology.id = "morphology_"+self.generic_cell.id

        self.generic_cell.morphology = morphology

        prox_point = Point3DWithDiam(x="0", y="0", z="0", diameter=self.get_bioparameter("cell_diameter").value)
        dist_point = Point3DWithDiam(x="0", y="0", z=self.get_bioparameter("cell_length").value, diameter=self.get_bioparameter("cell_diameter").value)

        segment = Segment(id="0",
                          name="soma",
                          proximal = prox_point, 
                          distal = dist_point)

        morphology.segments.append(segment)

        self.generic_cell.biophysical_properties = BiophysicalProperties(id="biophys_"+self.generic_cell.id)

        mp = MembraneProperties()
        self.generic_cell.biophysical_properties.membrane_properties = mp

        mp.init_memb_potentials.append(InitMembPotential(value=self.get_bioparameter("initial_memb_pot").value))

        mp.specific_capacitances.append(SpecificCapacitance(value=self.get_bioparameter("specific_capacitance").value))

        mp.spike_threshes.append(SpikeThresh(value=self.get_bioparameter("spike_thresh").value))

        mp.channel_densities.append(ChannelDensity(cond_density=self.get_bioparameter("leak_cond_density").value, 
                                                   id="Leak_all", 
                                                   ion_channel="Leak", 
                                                   erev=self.get_bioparameter("leak_erev").value,
                                                   ion="non_specific"))

        mp.channel_densities.append(ChannelDensity(cond_density=self.get_bioparameter("k_slow_cond_density").value, 
                                                   id="k_slow_all", 
                                                   ion_channel="k_slow", 
                                                   erev=self.get_bioparameter("k_slow_erev").value,
                                                   ion="k"))

        mp.channel_densities.append(ChannelDensity(cond_density=self.get_bioparameter("k_fast_cond_density").value, 
                                                   id="k_fast_all", 
                                                   ion_channel="k_fast", 
                                                   erev=self.get_bioparameter("k_fast_erev").value,
                                                   ion="k"))

        mp.channel_densities.append(ChannelDensity(cond_density=self.get_bioparameter("ca_boyle_cond_density").value, 
                                                   id="ca_boyle_all", 
                                                   ion_channel="ca_boyle", 
                                                   erev=self.get_bioparameter("ca_boyle_erev").value,
                                                   ion="ca"))

        ip = IntracellularProperties()
        self.generic_cell.biophysical_properties.intracellular_properties = ip

        # NOTE: resistivity/axial resistance not used for single compartment cell models, so value irrelevant!
        ip.resistivities.append(Resistivity(value="0.1 kohm_cm"))


        # NOTE: Ca reversal potential not calculated by Nernst, so initial_ext_concentration value irrelevant!
        species = Species(id="ca", 
                          ion="ca",
                          concentration_model="CaPool",
                          initial_concentration="0 mM",
                          initial_ext_concentration="2E-6 mol_per_cm3")

        ip.species.append(species)


        self.exc_syn = GradedSynapse(id="exc_syn",
                                conductance =        self.get_bioparameter("exc_syn_conductance").value,
                                delta =              self.get_bioparameter("exc_syn_delta").value,
                                Vth =                self.get_bioparameter("exc_syn_vth").value,
                                erev =               self.get_bioparameter("exc_syn_erev").value,
                                k =                  self.get_bioparameter("exc_syn_k").value)


        self.inh_syn = GradedSynapse(id="inh_syn",
                                conductance =        self.get_bioparameter("inh_syn_conductance").value,
                                delta =              self.get_bioparameter("inh_syn_delta").value,
                                Vth =                self.get_bioparameter("inh_syn_vth").value,
                                erev =               self.get_bioparameter("inh_syn_erev").value,
                                k =                  self.get_bioparameter("inh_syn_k").value)

        self.elec_syn = GapJunction(id="elec_syn",
                               conductance =    self.get_bioparameter("elec_syn_gbase").value)


        self.offset_current = PulseGenerator(id="offset_current",
                                delay=self.get_bioparameter("unphysiological_offset_current_del").value,
                                duration=self.get_bioparameter("unphysiological_offset_current_dur").value,
                                amplitude=self.get_bioparameter("unphysiological_offset_current").value)
Пример #13
0
size0 = 5
pop0 = Population(id="IafPop0", component=IafCell0.id, size=size0)

net.populations.append(pop0)

size1 = 5
pop1 = Population(id="IafPop1", component=IafCell0.id, size=size1)

net.populations.append(pop1)

prob_connection = 0.5

for pre in range(0, size0):

    pg = PulseGenerator(id="pulseGen_%i" % pre,
                        delay="0ms",
                        duration="100ms",
                        amplitude="%f nA" % (0.1 * random()))

    nml_doc.pulse_generators.append(pg)

    exp_input = ExplicitInput(target="%s[%i]" % (pop0.id, pre), input=pg.id)

    net.explicit_inputs.append(exp_input)

    for post in range(0, size1):
        # fromxx is used since from is Python keyword
        if random() <= prob_connection:
            syn = SynapticConnection(from_="%s[%i]" % (pop0.id, pre),
                                     synapse=syn0.id,
                                     to="%s[%i]" % (pop1.id, post))
            net.synaptic_connections.append(syn)
def generate_example_network(network_id,
                             numCells_exc,
                             numCells_inh,
                             x_size = 1000,
                             y_size = 100, 
                             z_size = 1000,
                             exc_group_component = "SimpleIaF",
                             inh_group_component = "SimpleIaF_inh",
                             validate = True,
                             random_seed = 1234,
                             generate_lems_simulation = False,
                             connections = True,
                             connection_probability_exc_exc =   0.4,
                             connection_probability_inh_exc =   0.4,
                             connection_probability_exc_inh =   0.4,
                             connection_probability_inh_inh =   0.4,
                             inputs = False,
                             input_firing_rate = 50, # Hz
                             input_offset_min = 0, # nA
                             input_offset_max = 0, # nA
                             num_inputs_per_exc = 4,
                             duration = 500,  # ms
                             dt = 0.05,
                             temperature="32.0 degC"):

    seed(random_seed)

    nml_doc = NeuroMLDocument(id=network_id)

    net = Network(id = network_id, 
                  type = "networkWithTemperature",
                  temperature = temperature)
                  
    net.notes = "Network generated using libNeuroML v%s"%__version__
    nml_doc.networks.append(net)
    
    for cell_comp in set([exc_group_component, inh_group_component]): # removes duplicates
        nml_doc.includes.append(IncludeType(href='%s.cell.nml'%cell_comp))

    # The names of the Exc & Inh groups/populations 
    exc_group = "Exc" 
    inh_group = "Inh" 

    # The names of the network connections 
    net_conn_exc_inh = "NetConn_Exc_Inh"
    net_conn_inh_exc = "NetConn_Inh_Exc"
    net_conn_exc_exc = "NetConn_Exc_Exc"
    net_conn_inh_inh = "NetConn_Inh_Inh"

    # The names of the synapse types (should match names at Cell Mechanism/Network tabs in neuroConstruct)
    exc_inh_syn = "AMPAR"
    inh_exc_syn = "GABAA"
    exc_exc_syn = "AMPAR"
    inh_inh_syn = "GABAA"

    for syn in [exc_inh_syn, inh_exc_syn]:
        nml_doc.includes.append(IncludeType(href='%s.synapse.nml'%syn))


    # Generate excitatory cells 

    exc_pop = Population(id=exc_group, component=exc_group_component, type="populationList", size=numCells_exc)
    net.populations.append(exc_pop)

    for i in range(0, numCells_exc) :
            index = i
            inst = Instance(id=index)
            exc_pop.instances.append(inst)
            inst.location = Location(x=str(x_size*random()), y=str(y_size*random()), z=str(z_size*random()))

    # Generate inhibitory cells
    inh_pop = Population(id=inh_group, component=inh_group_component, type="populationList", size=numCells_inh)
    net.populations.append(inh_pop)

    for i in range(0, numCells_inh) :
            index = i
            inst = Instance(id=index)
            inh_pop.instances.append(inst)
            inst.location = Location(x=str(x_size*random()), y=str(y_size*random()), z=str(z_size*random()))

    if connections:

        proj_exc_exc = Projection(id=net_conn_exc_exc, presynaptic_population=exc_group, postsynaptic_population=exc_group, synapse=exc_exc_syn)
        net.projections.append(proj_exc_exc)
        
        proj_exc_inh = Projection(id=net_conn_exc_inh, presynaptic_population=exc_group, postsynaptic_population=inh_group, synapse=exc_inh_syn)
        net.projections.append(proj_exc_inh)
        
        proj_inh_exc = Projection(id=net_conn_inh_exc, presynaptic_population=inh_group, postsynaptic_population=exc_group, synapse=inh_exc_syn)
        net.projections.append(proj_inh_exc)
        
        proj_inh_inh = Projection(id=net_conn_inh_inh, presynaptic_population=inh_group, postsynaptic_population=inh_group, synapse=inh_inh_syn)
        net.projections.append(proj_inh_inh)

        count_exc_inh = 0
        count_inh_exc = 0
        count_exc_exc = 0
        count_inh_inh = 0


        for i in range(0, numCells_exc):
            for j in range(0, numCells_inh):
                if i != j:
                    if random()<connection_probability_exc_inh:
                        add_connection(proj_exc_inh, count_exc_inh, exc_group, exc_group_component, i, 0, inh_group, inh_group_component, j, 0)
                        count_exc_inh+=1
                        
                    if random()<connection_probability_inh_exc:

                        add_connection(proj_inh_exc, count_inh_exc, inh_group, inh_group_component, j, 0, exc_group, exc_group_component, i, 0)
                        count_inh_exc+=1
                        
        for i in range(0, numCells_exc):
            for j in range(0, numCells_exc):
                if i != j:
                        
                    if random()<connection_probability_exc_exc:

                        add_connection(proj_exc_exc, count_exc_exc, exc_group, exc_group_component, i, 0, exc_group, exc_group_component, j, 0)
                        count_exc_exc+=1
                    

        for i in range(0, numCells_inh):
            for j in range(0, numCells_inh):
                if i != j:

                    if random()<connection_probability_inh_inh:

                        add_connection(proj_inh_inh, count_inh_inh, inh_group, inh_group_component, j, 0, inh_group, inh_group_component, i, 0)
                        count_inh_inh+=1

    if inputs:
        
        
        if input_firing_rate>0:
            mf_input_syn = "AMPAR"
            if mf_input_syn!=exc_inh_syn and mf_input_syn!=inh_exc_syn:
                nml_doc.includes.append(IncludeType(href='%s.synapse.nml'%mf_input_syn))

            rand_spiker_id = "input_%sHz"%input_firing_rate
            
            pfs = PoissonFiringSynapse(id=rand_spiker_id,
                                       average_rate="%s per_s"%input_firing_rate,
                                       synapse=mf_input_syn,
                                       spike_target="./%s"%mf_input_syn)

            nml_doc.poisson_firing_synapses.append(pfs)

            input_list = InputList(id="Input_0",
                                 component=rand_spiker_id,
                                 populations=exc_group)

            count = 0
            for i in range(0, numCells_exc):

                for j in range(num_inputs_per_exc):
                    input = Input(id=count, 
                                  target="../%s/%i/%s"%(exc_group, i, exc_group_component), 
                                  destination="synapses")  
                    input_list.input.append(input)

                count += 1

            net.input_lists.append(input_list)
            
        if input_offset_max != 0 or input_offset_min != 0:
            

            for i in range(0, numCells_exc):

                pg = PulseGenerator(id="PulseGenerator_%i"%i,
                                    delay="0ms",
                                    duration="%sms"%duration,
                                    amplitude="%fnA"%(input_offset_min+(input_offset_max-input_offset_min)*random()))
                nml_doc.pulse_generators.append(pg)

                input_list = InputList(id="Input_Pulse_List_%i"%i,
                                     component=pg.id,
                                     populations=exc_group)

                input = Input(id=0, 
                              target="../%s/%i/%s"%(exc_group, i, exc_group_component), 
                              destination="synapses")  
                input_list.input.append(input)


                net.input_lists.append(input_list)


    #######   Write to file  ######    

    print("Saving to file...")
    nml_file = network_id+'.net.nml'
    writers.NeuroMLWriter.write(nml_doc, nml_file)

    print("Written network file to: "+nml_file)


    if validate:

        ###### Validate the NeuroML ######    

        from neuroml.utils import validate_neuroml2
        validate_neuroml2(nml_file) 
        
    if generate_lems_simulation:
        # Create a LEMSSimulation to manage creation of LEMS file
        
        ls = LEMSSimulation("Sim_%s"%network_id, duration, dt)

        # Point to network as target of simulation
        ls.assign_simulation_target(net.id)
        
        # Include generated/existing NeuroML2 files
        ls.include_neuroml2_file('%s.cell.nml'%exc_group_component)
        ls.include_neuroml2_file('%s.cell.nml'%inh_group_component)
        ls.include_neuroml2_file(nml_file)
        

        # Specify Displays and Output Files
        disp_exc = "display_exc"
        ls.create_display(disp_exc, "Voltages Exc cells", "-80", "50")

        of_exc = 'Volts_file_exc'
        ls.create_output_file(of_exc, "v_exc.dat")
        
        disp_inh = "display_inh"
        ls.create_display(disp_inh, "Voltages Inh cells", "-80", "50")

        of_inh = 'Volts_file_inh'
        ls.create_output_file(of_inh, "v_inh.dat")

        for i in range(numCells_exc):
            quantity = "%s/%i/%s/v"%(exc_group, i, exc_group_component)
            ls.add_line_to_display(disp_exc, "Exc %i: Vm"%i, quantity, "1mV", pynml.get_next_hex_color())
            ls.add_column_to_output_file(of_exc, "v_%i"%i, quantity)
            
        for i in range(numCells_inh):
            quantity = "%s/%i/%s/v"%(inh_group, i, inh_group_component)
            ls.add_line_to_display(disp_inh, "Inh %i: Vm"%i, quantity, "1mV", pynml.get_next_hex_color())
            ls.add_column_to_output_file(of_inh, "v_%i"%i, quantity)

        # Save to LEMS XML file
        lems_file_name = ls.save_to_file()
        
    print "-----------------------------------"
Пример #15
0
 def generatePulse(population, idx, amplitude):
     pulse = PulseGenerator(id='baseline_%s%d' % (population, idx),
                            delay='0ms',
                            duration='200ms',
                            amplitude='%.02f pA' % amplitude)
     nml_doc.pulse_generators.append(pulse)
Пример #16
0
unphysiological_offset_current = BioParameter("unphysiological_offset_current", "0.21nA", "KnownError", "0")
unphysiological_offset_current_dur = BioParameter("unphysiological_offset_current_dur", "200ms", "KnownError", "0")


generic_cell = IafCell(id="generic_iaf_cell", 
                            C =                 iaf_C.value,
                            thresh =            iaf_thresh.value,
                            reset =             iaf_reset.value,
                            leak_conductance =  iaf_conductance.value,
                            leak_reversal =     iaf_leak_reversal.value)


exc_syn = ExpTwoSynapse(id="exc_syn",
                        gbase =         chem_exc_syn_gbase.value,
                        erev =          chem_exc_syn_erev.value,
                        tau_decay =     chem_exc_syn_decay.value,
                        tau_rise =      chem_exc_syn_rise.value)
    

inh_syn = ExpTwoSynapse(id="inh_syn",
                        gbase =         chem_inh_syn_gbase.value,
                        erev =          chem_inh_syn_erev.value,
                        tau_decay =     chem_inh_syn_decay.value,
                        tau_rise =      chem_inh_syn_rise.value)


offset_current = PulseGenerator(id="offset_current",
                        delay="0ms",
                        duration=unphysiological_offset_current_dur.value,
                        amplitude=unphysiological_offset_current.value)
Пример #17
0
def run_fitted_cell_simulation(sweeps_to_tune_against: List,
                               tuning_report: Dict,
                               simulation_id: str) -> None:
    """Run a simulation with the values obtained from the fitting

    :param tuning_report: tuning report from the optimser
    :type tuning_report: Dict
    :param simulation_id: text id of simulation
    :type simulation_id: str

    """
    # get the fittest variables
    fittest_vars = tuning_report["fittest vars"]
    C = str(fittest_vars["izhikevich2007Cell:Izh2007/C/pF"]) + "pF"
    k = str(
        fittest_vars["izhikevich2007Cell:Izh2007/k/nS_per_mV"]) + "nS_per_mV"
    vr = str(fittest_vars["izhikevich2007Cell:Izh2007/vr/mV"]) + "mV"
    vt = str(fittest_vars["izhikevich2007Cell:Izh2007/vt/mV"]) + "mV"
    vpeak = str(fittest_vars["izhikevich2007Cell:Izh2007/vpeak/mV"]) + "mV"
    a = str(fittest_vars["izhikevich2007Cell:Izh2007/a/per_ms"]) + "per_ms"
    b = str(fittest_vars["izhikevich2007Cell:Izh2007/b/nS"]) + "nS"
    c = str(fittest_vars["izhikevich2007Cell:Izh2007/c/mV"]) + "mV"
    d = str(fittest_vars["izhikevich2007Cell:Izh2007/d/pA"]) + "pA"

    # Create a simulation using our obtained parameters.
    # Note that the tuner generates a graph with the fitted values already, but
    # we want to keep a copy of our fitted cell also, so we'll create a NeuroML
    # Document ourselves also.
    sim_time = 1500.0
    simulation_doc = NeuroMLDocument(id="FittedNet")
    # Add an Izhikevich cell with some parameters to the document
    simulation_doc.izhikevich2007_cells.append(
        Izhikevich2007Cell(
            id="Izh2007",
            C=C,
            v0="-60mV",
            k=k,
            vr=vr,
            vt=vt,
            vpeak=vpeak,
            a=a,
            b=b,
            c=c,
            d=d,
        ))
    simulation_doc.networks.append(Network(id="Network0"))
    # Add a cell for each acquisition list
    popsize = len(sweeps_to_tune_against)
    simulation_doc.networks[0].populations.append(
        Population(id="Pop0", component="Izh2007", size=popsize))

    # Add a current source for each cell, matching the currents that
    # were used in the experimental study.
    counter = 0
    for acq in sweeps_to_tune_against:
        simulation_doc.pulse_generators.append(
            PulseGenerator(
                id="Stim{}".format(counter),
                delay="80ms",
                duration="1000ms",
                amplitude="{}pA".format(currents[acq]),
            ))
        simulation_doc.networks[0].explicit_inputs.append(
            ExplicitInput(target="Pop0[{}]".format(counter),
                          input="Stim{}".format(counter)))
        counter = counter + 1

    # Print a summary
    print(simulation_doc.summary())

    # Write to a neuroml file and validate it.
    reference = "FittedIzhFergusonPyr3"
    simulation_filename = "{}.net.nml".format(reference)
    write_neuroml2_file(simulation_doc, simulation_filename, validate=True)

    simulation = LEMSSimulation(
        sim_id=simulation_id,
        duration=sim_time,
        dt=0.1,
        target="Network0",
        simulation_seed=54321,
    )
    simulation.include_neuroml2_file(simulation_filename)
    simulation.create_output_file("output0", "{}.v.dat".format(simulation_id))
    counter = 0
    for acq in sweeps_to_tune_against:
        simulation.add_column_to_output_file("output0",
                                             "Pop0[{}]".format(counter),
                                             "Pop0[{}]/v".format(counter))
        counter = counter + 1
    simulation_file = simulation.save_to_file()
    # simulate
    run_lems_with_jneuroml(simulation_file,
                           max_memory="2G",
                           nogui=True,
                           plot=False)
Пример #18
0
def add_new_input(nml_doc, cell, delay, duration, amplitude, params):
    id = get_next_stim_id(nml_doc, cell)
    input = PulseGenerator(id=id, delay=delay, duration=duration, amplitude=amplitude)
    nml_doc.pulse_generators.append(input)

    append_input_to_nml_input_list(input, nml_doc, cell, params)
Пример #19
0
def generatePopulationLEMS(pops, n_pops, amplitudes, baseline, sim_length,
                           delay):
    def generatePopulationProjection(from_pop, to_pop, n_from_pop, n_to_pop,
                                     w_to_from_pop, p_to_from_pop, net):
        connection_count = 0
        projection = ContinuousProjection(
            id='%s_%s' % (from_pop, to_pop),
            presynaptic_population='%sPop' % from_pop,
            postsynaptic_population='%sPop' % to_pop)
        for idx_from_pop in range(n_from_pop):
            for idx_to_pop in range(n_to_pop):
                if random.random() <= p_to_from_pop:
                    pre_comp = from_pop.upper()
                    to_comp = to_pop.upper()
                    connection = ContinuousConnectionInstanceW(
                        id=connection_count,
                        pre_cell='../%sPop/%i/%s' %
                        (from_pop, idx_from_pop, pre_comp),
                        post_cell='../%sPop/%i/%s' %
                        (to_pop, idx_to_pop, to_comp),
                        pre_component='silent1',
                        post_component='rs',
                        weight=w_to_from_pop / (p_to_from_pop * n_from_pop))
                    projection.continuous_connection_instance_ws.append(
                        connection)
                    connection_count += 1
        if connection_count > 0:
            net.continuous_projections.append(projection)

    # Connection probabilities for each pop in the population
    w_to_from_pops = np.array([[2.42, -.33, -0.80, 0], [2.97, -3.45, -2.13, 0],
                               [4.64, 0, 0, -2.79], [0.71, 0, -0.16, 0]])

    # p_to_from_pop = np.array([[1, 1,    1,     0],
    #                           [1, 1, 1,     0],
    #                           [1, 0,    0,  1],
    #                           [1, 0,  1,     0]])
    p_to_from_pop = np.array([[0.02, 1, 1, 0], [0.01, 1, 0.85, 0],
                              [0.01, 0, 0, 0.55], [0.01, 0, 0.5, 0]])

    nml_doc = NeuroMLDocument(id='RandomPopulation')

    # Add silent synapsis
    silent_syn = SilentSynapse(id='silent1')
    nml_doc.silent_synapses.append(silent_syn)

    for pop_idx, pop in enumerate(pops):
        pulse = PulseGenerator(id='baseline_%s' % pop,
                               delay='0ms',
                               duration=str(sim_length) + 'ms',
                               amplitude=amplitudes[pop_idx])
        nml_doc.pulse_generators.append(pulse)

        if pop == 'vip':
            # time point when additional current is induced
            pulse_mod = PulseGenerator(id='modVIP',
                                       delay=str(delay) + 'ms',
                                       duration=str(sim_length - delay) + 'ms',
                                       amplitude='10 pA')
            nml_doc.pulse_generators.append(pulse_mod)

    # Create the network and add the 4 different populations
    net = Network(id='net2')
    nml_doc.networks.append(net)

    colours = ['0 0 1', '1 0 0', '.5 0 .5', '0 1 0']
    centres = [(0, 0, 0), (-1200, 0, 0), (-800, 800, 0), (0, 1200, 0)]
    radii = [800, 200, 200, 200]
    # Populate the network with the 4 populations
    for pop_idx, pop in enumerate(pops):
        pop = Population(id='%sPop' % pop,
                         component=(pops[pop_idx]).upper(),
                         size=n_pops[pop_idx],
                         type='populationList')
        net.populations.append(pop)
        pop.properties.append(Property(tag='color', value=colours[pop_idx]))
        pop.properties.append(Property(tag='radius', value=10))

        for n_pop in range(n_pops[pop_idx]):
            inst = Instance(id=n_pop)
            pop.instances.append(inst)
            x, y, z = centres[pop_idx]
            r = (random.random() * radii[pop_idx]**3)**(1. / 3)
            theta = random.random() * math.pi
            phi = random.random() * math.pi * 2

            inst.location = Location(
                x=str(x + r * math.sin(theta) * math.cos(phi)),
                y=str(y + r * math.sin(theta) * math.sin(phi)),
                z=str(z + r * math.cos(theta)))

    for from_idx, from_pop in enumerate(pops):
        for to_idx, to_pop in enumerate(pops):
            generatePopulationProjection(pops[from_idx], pops[to_idx],
                                         n_pops[from_idx], n_pops[to_idx],
                                         w_to_from_pops[to_idx, from_idx],
                                         p_to_from_pop[to_idx, from_idx], net)
    # Add inputs
    for pop_idx, pop in enumerate(pops):

        input_list = InputList(id='baseline_%s' % pop,
                               component='baseline_%s' % pops[pop_idx],
                               populations='%sPop' % pop)
        net.input_lists.append(input_list)

        if pop == 'vip':
            input_list_mod = InputList(id='modulation_%s' % pop,
                                       component='modVIP',
                                       populations='%sPop' % pop)
            net.input_lists.append(input_list_mod)

        for n_idx in range(n_pops[pop_idx]):
            input = Input(id=n_idx,
                          target='../%sPop/%i/%s' % (pop, n_idx, pop.upper()),
                          destination='synapses')
            input_list.input.append(input)

            # if vip add modulatory input
            if pop == 'vip':

                mod_input = Input(id=n_idx,
                                  target='../vipPop/%i/VIP' % n_idx,
                                  destination='synapses')
                input_list_mod.input.append(mod_input)

    nml_file = 'RandomPopulationRate_%s_baseline.nml' % baseline
    writers.NeuroMLWriter.write(nml_doc, nml_file)
    print('Written network file to: %s' % nml_file)

    # Validate the NeuroML
    from neuroml.utils import validate_neuroml2
    validate_neuroml2(nml_file)
Пример #20
0
def tune_izh_model(acq_list: List, metrics_from_data: Dict,
                   currents: Dict) -> Dict:
    """Tune networks model against the data.

    Here we generate a network with the necessary number of Izhikevich cells,
    one for each current stimulus, and tune them against the experimental data.

    :param acq_list: list of indices of acquisitions/sweeps to tune against
    :type acq_list: list
    :param metrics_from_data: dictionary with the sweep number as index, and
        the dictionary containing metrics generated from the analysis
    :type metrics_from_data: dict
    :param currents: dictionary with sweep number as index and stimulus current
        value
    """

    # length of simulation of the cells---should match the length of the
    # experiment
    sim_time = 1500.0
    # Create a NeuroML template network simulation file that we will use for
    # the tuning
    template_doc = NeuroMLDocument(id="IzhTuneNet")
    # Add an Izhikevich cell with some parameters to the document
    template_doc.izhikevich2007_cells.append(
        Izhikevich2007Cell(
            id="Izh2007",
            C="100pF",
            v0="-60mV",
            k="0.7nS_per_mV",
            vr="-60mV",
            vt="-40mV",
            vpeak="35mV",
            a="0.03per_ms",
            b="-2nS",
            c="-50.0mV",
            d="100pA",
        ))
    template_doc.networks.append(Network(id="Network0"))
    # Add a cell for each acquisition list
    popsize = len(acq_list)
    template_doc.networks[0].populations.append(
        Population(id="Pop0", component="Izh2007", size=popsize))

    # Add a current source for each cell, matching the currents that
    # were used in the experimental study.
    counter = 0
    for acq in acq_list:
        template_doc.pulse_generators.append(
            PulseGenerator(
                id="Stim{}".format(counter),
                delay="80ms",
                duration="1000ms",
                amplitude="{}pA".format(currents[acq]),
            ))
        template_doc.networks[0].explicit_inputs.append(
            ExplicitInput(target="Pop0[{}]".format(counter),
                          input="Stim{}".format(counter)))
        counter = counter + 1

    # Print a summary
    print(template_doc.summary())

    # Write to a neuroml file and validate it.
    reference = "TuneIzhFergusonPyr3"
    template_filename = "{}.net.nml".format(reference)
    write_neuroml2_file(template_doc, template_filename, validate=True)

    # Now for the tuning bits

    # format is type:id/variable:id/units
    # supported types: cell/channel/izhikevich2007cell
    # supported variables:
    #  - channel: vShift
    #  - cell: channelDensity, vShift_channelDensity, channelDensityNernst,
    #  erev_id, erev_ion, specificCapacitance, resistivity
    #  - izhikevich2007Cell: all available attributes

    # we want to tune these parameters within these ranges
    # param: (min, max)
    parameters = {
        "izhikevich2007Cell:Izh2007/C/pF": (100, 300),
        "izhikevich2007Cell:Izh2007/k/nS_per_mV": (0.01, 2),
        "izhikevich2007Cell:Izh2007/vr/mV": (-70, -50),
        "izhikevich2007Cell:Izh2007/vt/mV": (-60, 0),
        "izhikevich2007Cell:Izh2007/vpeak/mV": (35, 70),
        "izhikevich2007Cell:Izh2007/a/per_ms": (0.001, 0.4),
        "izhikevich2007Cell:Izh2007/b/nS": (-10, 10),
        "izhikevich2007Cell:Izh2007/c/mV": (-65, -10),
        "izhikevich2007Cell:Izh2007/d/pA": (50, 500),
    }  # type: Dict[str, Tuple[float, float]]

    # Set up our target data and so on
    ctr = 0
    target_data = {}
    weights = {}
    for acq in acq_list:
        # data to fit to:
        # format: path/to/variable:metric
        # metric from pyelectro, for example:
        # https://pyelectro.readthedocs.io/en/latest/pyelectro.html?highlight=mean_spike_frequency#pyelectro.analysis.mean_spike_frequency
        mean_spike_frequency = "Pop0[{}]/v:mean_spike_frequency".format(ctr)
        average_last_1percent = "Pop0[{}]/v:average_last_1percent".format(ctr)
        first_spike_time = "Pop0[{}]/v:first_spike_time".format(ctr)

        # each metric can have an associated weight
        weights[mean_spike_frequency] = 1
        weights[average_last_1percent] = 1
        weights[first_spike_time] = 1

        # value of the target data from our data set
        target_data[mean_spike_frequency] = metrics_from_data[acq][
            "{}:mean_spike_frequency".format(acq)]
        target_data[average_last_1percent] = metrics_from_data[acq][
            "{}:average_last_1percent".format(acq)]
        target_data[first_spike_time] = metrics_from_data[acq][
            "{}:first_spike_time".format(acq)]

        # only add these if the experimental data includes them
        # these are only generated for traces with spikes
        if "{}:average_maximum".format(acq) in metrics_from_data[acq]:
            average_maximum = "Pop0[{}]/v:average_maximum".format(ctr)
            weights[average_maximum] = 1
            target_data[average_maximum] = metrics_from_data[acq][
                "{}:average_maximum".format(acq)]
        if "{}:average_minimum".format(acq) in metrics_from_data[acq]:
            average_minimum = "Pop0[{}]/v:average_minimum".format(ctr)
            weights[average_minimum] = 1
            target_data[average_minimum] = metrics_from_data[acq][
                "{}:average_minimum".format(acq)]

        ctr = ctr + 1

    # simulator to use
    simulator = "jNeuroML"

    return run_optimisation(
        # Prefix for new files
        prefix="TuneIzh",
        # Name of the NeuroML template file
        neuroml_file=template_filename,
        # Name of the network
        target="Network0",
        # Parameters to be fitted
        parameters=list(parameters.keys()),
        # Our max and min constraints
        min_constraints=[v[0] for v in parameters.values()],
        max_constraints=[v[1] for v in parameters.values()],
        # Weights we set for parameters
        weights=weights,
        # The experimental metrics to fit to
        target_data=target_data,
        # Simulation time
        sim_time=sim_time,
        # EC parameters
        population_size=100,
        max_evaluations=500,
        num_selected=30,
        num_offspring=50,
        mutation_rate=0.9,
        num_elites=3,
        # Seed value
        seed=12345,
        # Simulator
        simulator=simulator,
        dt=0.025,
        show_plot_already='-nogui' not in sys.argv,
        save_to_file="fitted_izhikevich_fitness.png",
        save_to_file_scatter="fitted_izhikevich_scatter.png",
        save_to_file_hist="fitted_izhikevich_hist.png",
        save_to_file_output="fitted_izhikevich_output.png",
        num_parallel_evaluations=4,
    )