from neuromllite import Network, Cell, InputSource, Population, Synapse from neuromllite import Projection, RandomConnectivity, Input, Simulation import sys ################################################################################ ### Build new network net = Network(id='PopExample') net.notes = 'Testing...' net.seed = 1234 net.parameters = { 'N': 10, 'fractionE': 0.8, 'weightInput': 1, 'Wei':0.01, 'Wie':0.01} cell = Cell(id='iafcell', pynn_cell='IF_cond_alpha') cell.parameters = { "tau_refrac":0} net.cells.append(cell) input_source = InputSource(id='poissonFiringSyn100Hz', neuroml2_source_file='inputs.nml') net.input_sources.append(input_source) net.input_sources.append(input_source) pE = Population(id='Epop', size='int(N*fractionE)', component=cell.id, properties={'color':'.7 0 0'}) pI = Population(id='Ipop', size='N - int(N*fractionE)', component=cell.id, properties={'color':'0 0 .7'})
def generate(ref, np2=0, np5=0, nb2=0, nb5=0, recordTraces='*'): ################################################################################ ### Build new network net = Network(id=ref) net.notes = 'Example: %s...' % ref net.seed = 7890 net.temperature = 32 net.parameters = { 'np2': np2, 'np5': np5, 'nb2': nb2, 'nb5': nb5, 'offset_curr_l2p': -0.05, 'weight_bkg_l2p': 0.01, 'weight_bkg_l5p': 0.01 } l2p_cell = Cell(id='CELL_HH_reduced_L2Pyr', neuroml2_source_file='../CELL_HH_reduced_L2Pyr.cell.nml') net.cells.append(l2p_cell) l5p_cell = Cell(id='CELL_HH_reduced_L5Pyr', neuroml2_source_file='../CELL_HH_reduced_L5Pyr.cell.nml') net.cells.append(l5p_cell) l2b_cell = Cell(id='CELL_HH_simple_L2Basket', neuroml2_source_file='../CELL_HH_simple_L2Basket.cell.nml') net.cells.append(l2b_cell) l5b_cell = Cell(id='CELL_HH_simple_L5Basket', neuroml2_source_file='../CELL_HH_simple_L5Basket.cell.nml') net.cells.append(l5b_cell) input_source_poisson100 = InputSource(id='poissonFiringSyn100Hz', neuroml2_source_file='../inputs.nml') net.input_sources.append(input_source_poisson100) input_offset_curr_l2p = InputSource(id='input_offset_curr_l2p', pynn_input='DCSource', parameters={ 'amplitude': 'offset_curr_l2p', 'start': 0, 'stop': 1e9 }) net.input_sources.append(input_offset_curr_l2p) l2 = RectangularRegion(id='L2', x=0, y=1000, z=0, width=1000, height=10, depth=1000) net.regions.append(l2) l5 = RectangularRegion(id='L5', x=0, y=0, z=0, width=1000, height=10, depth=1000) net.regions.append(l5) #https://github.com/OpenSourceBrain/OpenCortex import opencortex.utils.color as occ pop_l2p = Population(id='pop_l2p', size='np2', component=l2p_cell.id, properties={'color': occ.L23_PRINCIPAL_CELL}, random_layout=RandomLayout(region=l2.id)) net.populations.append(pop_l2p) pop_l5p = Population(id='pop_l5p', size='np5', component=l5p_cell.id, properties={'color': occ.L5_PRINCIPAL_CELL}, random_layout=RandomLayout(region=l5.id)) net.populations.append(pop_l5p) pop_l2b = Population(id='pop_l2b', size='nb2', component=l2b_cell.id, properties={'color': occ.L23_INTERNEURON}, random_layout=RandomLayout(region=l2.id)) net.populations.append(pop_l2b) pop_l5b = Population(id='pop_l5b', size='nb5', component=l5b_cell.id, properties={'color': occ.L5_INTERNEURON}, random_layout=RandomLayout(region=l5.id)) net.populations.append(pop_l5b) # L2 -> L2 _add_projection(pop_l2p, pop_l2b, 'AMPA', delay=0, weight=0.001, probability=0.8, net=net) _add_projection(pop_l2b, pop_l2p, 'L2Pyr_GABAA', delay=0, weight=0.001, probability=0.8, net=net) _add_projection(pop_l2b, pop_l2p, 'L2Pyr_GABAB', delay=0, weight=0.001, probability=0.8, net=net) # L2 -> L5 _add_projection(pop_l2p, pop_l5p, 'L5Pyr_AMPA', delay=0, weight=0.001, probability=0.8, net=net) _add_projection(pop_l2p, pop_l5b, 'AMPA', delay=0, weight=0.001, probability=0.8, net=net) _add_projection(pop_l2b, pop_l5p, 'L5Pyr_GABAA', delay=0, weight=0.001, probability=0.8, net=net) # L5 -> L5 _add_projection(pop_l5p, pop_l5b, 'AMPA', delay=0, weight=0.001, probability=0.8, net=net) _add_projection(pop_l5b, pop_l5p, 'L5Pyr_GABAA', delay=0, weight=0.001, probability=0.8, net=net) _add_projection(pop_l5b, pop_l5p, 'L5Pyr_GABAB', delay=0, weight=0.001, probability=0.8, net=net) net.inputs.append( Input(id='stim_%s' % pop_l2p.id, input_source=input_source_poisson100.id, population=pop_l2p.id, percentage=100, weight='weight_bkg_l2p')) net.inputs.append( Input(id='stim_%s' % pop_l5p.id, input_source=input_source_poisson100.id, population=pop_l5p.id, percentage=100, weight='weight_bkg_l5p')) print(net.to_json()) new_file = net.to_json_file('%s.json' % net.id) ################################################################################ ### Build Simulation object & save as JSON sim = Simulation(id='Sim%s' % net.id, network=new_file, duration='500', seed='1111', dt='0.025', recordTraces={'all': recordTraces}, recordSpikes={'all': '*'}) sim.to_json_file() print(sim.to_json()) return sim, net
from neuromllite import Network, Cell, InputSource, Population, Synapse from neuromllite import Projection, RandomConnectivity, Input, Simulation import sys ################################################################################ ### Build new network net = Network(id="Example8_Extension") net.notes = "Example 8: general testing..." net.seed = 7890 net.temperature = 32.0 net.parameters = {"N": 10, "fractionE": 0.8, "weightInput": 1} cell = Cell(id="hhcell", neuroml2_source_file="test_files/hhcell.cell.nml") net.cells.append(cell) input_source = InputSource( id="poissonFiringSyn", neuroml2_source_file="test_files/inputs.nml" ) net.input_sources.append(input_source) """ input_source = InputSource(id='iclamp0', pynn_input='DCSource', parameters={'amplitude':0.2, 'start':100., 'stop':900.})""" net.input_sources.append(input_source)