Пример #1
0
    def test_tilt_correction_end_to_end(self):
        input = {
            'swc_path': self.swc_path,
            'marker_path': self.marker_path,
            'ccf_soma_location': self.ccf_soma_location,
            'slice_transform_list': self.slice_transform_list,
            'slice_image_flip': self.slice_image_flip,
            'ccf_path': self.ccf_path,
            'output_json': self.output_json_path
        }
        cmd = [
            'python', '-m',
            'neuron_morphology.transforms.tilt_correction.compute_tilt_correction'
        ]
        for key, value in input.items():
            cmd.append(f'--{key}')
            cmd.append(f'{value}')

        sp.check_call(cmd)

        outputs = ju.read(self.output_json_path)
        self.assertAlmostEqual(outputs['tilt_correction'], -np.pi / 2)

        aff_t = AffineTransform.from_dict(outputs['tilt_transform_dict'])
        morph_t = aff_t.transform_morphology(self.morphology)

        axon = morph_t.node_by_id(1)
        self.assertAlmostEqual(axon['x'], 0)
        self.assertAlmostEqual(axon['y'], 3)
        self.assertAlmostEqual(axon['z'], -2)
Пример #2
0
    def test_scale_correction_end_to_end(self):
        input = {
            'swc_path': self.swc_path,
            'marker_path': self.marker_path,
            'soma_depth': self.soma_depth,
            'cut_thickness': self.cut_thickness,
            'output_json': self.output_json_path
        }
        cmd = [
            'python', '-m',
            'neuron_morphology.transforms.scale_correction.compute_scale_correction'
        ]
        for key, value in input.items():
            cmd.append(f'--{key}')
            cmd.append(f'{value}')

        sp.check_call(cmd)

        outputs = ju.read(self.output_json_path)
        self.assertAlmostEqual(outputs['scale_correction'], 2.0)

        aff_t = AffineTransform.from_dict(outputs['scale_transform'])
        morph_t = aff_t.transform_morphology(self.morphology,
                                             scale_radius=False)

        axon = morph_t.node_by_id(1)
        self.assertAlmostEqual(axon['x'], 0)
        self.assertAlmostEqual(axon['y'], 2)
        self.assertAlmostEqual(axon['z'], 200)
        self.assertAlmostEqual(axon['radius'], 0.4)
Пример #3
0
    def test_upright_end_to_end(self):
        input = {
            'gradient_path': self.gradient_path,
            'node': '[0, 0, 0]',
            'swc_path': self.swc_path,
            'output_json': self.output_json_path
        }
        cmd = [
            'python', '-m',
            'neuron_morphology.transforms.upright_angle.compute_angle'
        ]
        for key, value in input.items():
            cmd.append(f'--{key}')
            cmd.append(f'{value}')

        sp.check_call(cmd)

        outputs = ju.read(self.output_json_path)
        self.assertAlmostEqual(outputs['upright_angle'], -np.pi / 2, 3)

        aff_t = AffineTransform.from_dict(outputs['upright_transform_dict'])
        morph_t = aff_t.transform_morphology(self.morphology)

        axon = morph_t.node_by_id(1)
        self.assertAlmostEqual(axon['x'], 1)
        self.assertAlmostEqual(axon['y'], 3)
        self.assertAlmostEqual(axon['z'], 3)
Пример #4
0
    def test_transform_morphology(self):
        transformed_nodes = (AffineTransform(self.array)
                             .transform_morphology(self.morphology)
                             .nodes())

        for node in transformed_nodes:
            assert np.allclose([node['x'], node['y'], node['z']],
                               self.transformed_vector[node['id']])
Пример #5
0
def main():
    mod = ArgSchemaParser(schema_type=ApplyAffineSchema,
                          output_schema_type=OutputParameters)
    args = mod.args

    if 'affine_dict' in args:
        affine_transform = AffineTransform.from_dict(args['affine_dict'])
    elif 'affine_list' in args:
        affine_transform = AffineTransform.from_list(args['affine_list'])
    else:
        raise ValueError('must provide either an affine_dict or affine_list')

    morph_in = morphology_from_swc(args['input_swc'])

    morph_out = affine_transform.transform_morphology(morph_in)

    morphology_to_swc(morph_out, args['output_swc'])

    output = {
        'inputs': args,
        'transformed_swc': args['output_swc'],
    }

    mod.output(output)
Пример #6
0
    def setUp(self):

        self.morphology = (MorphologyBuilder().root(1, 2, 3).axon(0, 2,
                                                                  3).build())

        self.test_dir = tempfile.mkdtemp()

        self.swc_path = os.path.join(self.test_dir, '123.swc')
        morphology_to_swc(self.morphology, self.swc_path)

        self.marker_path = os.path.join(self.test_dir, '123.marker')
        with open(self.marker_path, 'w') as f:
            f.write(
                "##x,y,z,radius,shape,name,comment, color_r,color_g,color_b\n"
                "1.0,2.0,2.5,0.0,0,30,0,255, 255, 255\n"
                "0.0,2.0,3.0,0.0,0,20,0,255, 255, 255")

        self.slice_transform_list = [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0]
        self.slice_transform = AffineTransform.from_list(
            self.slice_transform_list)
        self.slice_image_flip = True

        self.soma_marker = {'x': 1, 'y': 2, 'z': 0}
        self.soma_voxel = (400, 400, 1120)

        self.ccf_soma_location = [
            self.soma_voxel[0] * CCF_RESOLUTION,
            self.soma_voxel[1] * CCF_RESOLUTION,
            self.soma_voxel[2] * CCF_RESOLUTION
        ]
        self.csl_dict = dict(zip(['x', 'y', 'z'], self.ccf_soma_location))

        # Streamline is on z+, so should result in tilt of np.pi / 2
        self.closest_path = np.asarray([
            400 * np.ones((20, ), dtype='i'), 400 * np.ones((20, ), dtype='i'),
            np.arange(1120, 1140, dtype='i')
        ])

        self.ccf_path = os.path.join(self.test_dir, 'paths.h5')
        path = np.ravel_multi_index(self.closest_path, CCF_SHAPE)
        with h5py.File(self.ccf_path, 'w') as f:
            f.create_dataset("view lookup", (1, ), dtype='i', data=0)
            f.create_dataset("paths", (1, 20), dtype='i', data=path)

        self.output_json_path = os.path.join(self.test_dir, 'output.json')
Пример #7
0
def collect_inputs(working_bucket: str, run_prefix: str,
                   reconstruction_id: int, upright_swc_key: str):

    md_json_key = f"{run_prefix}/{reconstruction_id}.json"
    md_json_response = s3.get_object(Bucket=working_bucket, Key=md_json_key)
    metadata = json.load(md_json_response["Body"])

    marker_key = f"{run_prefix}/{metadata['marker_file']}"
    ccf_key = 'top_view_paths_10.h5'

    swc_response = s3.get_object(
        Bucket=working_bucket,
        Key=upright_swc_key,
    )

    marker_response = s3.get_object(
        Bucket=working_bucket,
        Key=marker_key,
    )
    ccf_response = s3.get_object(
        Bucket=working_bucket,
        Key=ccf_key,
    )

    morphology = morphology_from_swc(swc_response["Body"])
    soma_marker = read_soma_marker(marker_response["Body"])
    ccf_data = BytesIO(ccf_response["Body"].read())

    ccf_soma_location = dict(zip(['x', 'y', 'z'], metadata["ccf_soma_xyz"]))
    slice_transform = AffineTransform.from_list(metadata['slice_transform'])

    return {
        'morphology': morphology,
        'soma_marker': soma_marker,
        'ccf_soma_location': ccf_soma_location,
        'slice_transform': slice_transform,
        'slice_image_flip': metadata['slice_image_flip'],
        'ccf_path': ccf_data,
    }
Пример #8
0
 def test_affine_from_list(self):
     assert np.allclose(AffineTransform.from_list(self.list).affine,
                        self.array)
Пример #9
0
 def test_affine_to_dict(self):
     affine_dict = AffineTransform(self.array).to_dict()
     for key, value in self.dict.items():
         self.assertAlmostEqual(value, affine_dict[key])
Пример #10
0
 def test_init_affine_from_dict(self):
     assert np.allclose(AffineTransform.from_dict(self.dict).affine,
                        self.array)
Пример #11
0
 def test_init_affine_matrix_from_array(self):
     assert np.allclose(AffineTransform(self.array).affine,
                        self.array)
Пример #12
0
 def test_init_affine_empty(self):
     assert np.allclose(AffineTransform().affine,
                        np.eye(4))
Пример #13
0
 def affine_from_transform_translation_2nd(self):
     affine = affine_from_transform_translation(transform=self.transform,
                                                translation=self.translation)
     assert np.allclose(AffineTransform(affine).transform(self.point),
                        [1 / 2 + 10, np.sqrt(3) / 2, 0])
Пример #14
0
 def test_transform_vector(self):
     affine_transform = AffineTransform(self.array)
     assert np.allclose(affine_transform.transform(self.vector),
                        np.asarray(self.transformed_vector))
Пример #15
0
 def test_affine_to_list(self):
     affine_list = AffineTransform(self.array).to_list()
     assert np.allclose(affine_list, self.list)
Пример #16
0
 def test_transform_point(self):
     affine_transform = AffineTransform(self.array)
     assert np.allclose(affine_transform.transform(self.point),
                        np.asarray([-np.sqrt(3)/2, 10.5, 0]))
Пример #17
0
 def affine_from_transform_translation_1st(self):
     affine = affine_from_transform_translation(transform=self.transform,
                                                translation=self.translation,
                                                translate_first=True)
     assert np.allclose(AffineTransform(affine).transform(self.point),
                        [11 / 2, 11 * np.sqrt(3) / 2, 0])