Пример #1
0
def parse(args):
    logger = get_logger("Parsing")
    args.cuda = torch.cuda.is_available()
    device = torch.device('cuda', 0) if args.cuda else torch.device('cpu')
    test_path = args.test

    model_path = args.model_path
    model_name = os.path.join(model_path, 'model.pt')
    punctuation = args.punctuation
    print(args)

    logger.info("Creating Alphabets")
    alphabet_path = os.path.join(model_path, 'alphabets')
    assert os.path.exists(alphabet_path)
    word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_data.create_alphabets(
        alphabet_path, None)

    num_words = word_alphabet.size()
    num_chars = char_alphabet.size()
    num_pos = pos_alphabet.size()
    num_types = type_alphabet.size()

    logger.info("Word Alphabet Size: %d" % num_words)
    logger.info("Character Alphabet Size: %d" % num_chars)
    logger.info("POS Alphabet Size: %d" % num_pos)
    logger.info("Type Alphabet Size: %d" % num_types)

    result_path = os.path.join(model_path, 'tmp')
    if not os.path.exists(result_path):
        os.makedirs(result_path)

    punct_set = None
    if punctuation is not None:
        punct_set = set(punctuation)
        logger.info("punctuations(%d): %s" %
                    (len(punct_set), ' '.join(punct_set)))

    logger.info("loading network...")
    hyps = json.load(open(os.path.join(model_path, 'config.json'), 'r'))
    model_type = hyps['model']
    assert model_type in ['DeepBiAffine', 'NeuroMST', 'StackPtr']
    word_dim = hyps['word_dim']
    char_dim = hyps['char_dim']
    use_pos = hyps['pos']
    pos_dim = hyps['pos_dim']
    mode = hyps['rnn_mode']
    hidden_size = hyps['hidden_size']
    arc_space = hyps['arc_space']
    type_space = hyps['type_space']
    p_in = hyps['p_in']
    p_out = hyps['p_out']
    p_rnn = hyps['p_rnn']
    activation = hyps['activation']
    prior_order = None

    alg = 'transition' if model_type == 'StackPtr' else 'graph'
    if model_type == 'DeepBiAffine':
        num_layers = hyps['num_layers']
        network = DeepBiAffine(word_dim,
                               num_words,
                               char_dim,
                               num_chars,
                               pos_dim,
                               num_pos,
                               mode,
                               hidden_size,
                               num_layers,
                               num_types,
                               arc_space,
                               type_space,
                               p_in=p_in,
                               p_out=p_out,
                               p_rnn=p_rnn,
                               pos=use_pos,
                               activation=activation)
    elif model_type == 'NeuroMST':
        num_layers = hyps['num_layers']
        network = NeuroMST(word_dim,
                           num_words,
                           char_dim,
                           num_chars,
                           pos_dim,
                           num_pos,
                           mode,
                           hidden_size,
                           num_layers,
                           num_types,
                           arc_space,
                           type_space,
                           p_in=p_in,
                           p_out=p_out,
                           p_rnn=p_rnn,
                           pos=use_pos,
                           activation=activation)
    elif model_type == 'StackPtr':
        encoder_layers = hyps['encoder_layers']
        decoder_layers = hyps['decoder_layers']
        num_layers = (encoder_layers, decoder_layers)
        prior_order = hyps['prior_order']
        grandPar = hyps['grandPar']
        sibling = hyps['sibling']
        network = StackPtrNet(word_dim,
                              num_words,
                              char_dim,
                              num_chars,
                              pos_dim,
                              num_pos,
                              mode,
                              hidden_size,
                              encoder_layers,
                              decoder_layers,
                              num_types,
                              arc_space,
                              type_space,
                              prior_order=prior_order,
                              activation=activation,
                              p_in=p_in,
                              p_out=p_out,
                              p_rnn=p_rnn,
                              pos=use_pos,
                              grandPar=grandPar,
                              sibling=sibling)
    else:
        raise RuntimeError('Unknown model type: %s' % model_type)

    network = network.to(device)
    network.load_state_dict(torch.load(model_name, map_location=device))
    model = "{}-{}".format(model_type, mode)
    logger.info("Network: %s, num_layer=%s, hidden=%d, act=%s" %
                (model, num_layers, hidden_size, activation))

    logger.info("Reading Data")
    if alg == 'graph':
        data_test = conllx_data.read_data(test_path,
                                          word_alphabet,
                                          char_alphabet,
                                          pos_alphabet,
                                          type_alphabet,
                                          symbolic_root=True)
    else:
        data_test = conllx_stacked_data.read_data(test_path,
                                                  word_alphabet,
                                                  char_alphabet,
                                                  pos_alphabet,
                                                  type_alphabet,
                                                  prior_order=prior_order)

    beam = args.beam
    pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet,
                               type_alphabet)
    gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet,
                               type_alphabet)
    pred_filename = os.path.join(result_path, 'pred.txt')
    pred_writer.start(pred_filename)
    gold_filename = os.path.join(result_path, 'gold.txt')
    gold_writer.start(gold_filename)

    with torch.no_grad():
        print('Parsing...')
        start_time = time.time()
        eval(alg,
             data_test,
             network,
             pred_writer,
             gold_writer,
             punct_set,
             word_alphabet,
             pos_alphabet,
             device,
             beam,
             batch_size=args.test_batch_size)
        print('Time: %.2fs' % (time.time() - start_time))

    pred_writer.close()
    gold_writer.close()
Пример #2
0
def train(args):
    logger = get_logger("Parsing")

    args.cuda = torch.cuda.is_available()
    device = torch.device('cuda', 0) if args.cuda else torch.device('cpu')
    train_path = args.train
    dev_path = args.dev
    test_path = args.test

    num_epochs = args.num_epochs
    batch_size = args.batch_size
    optim = args.optim
    learning_rate = args.learning_rate
    lr_decay = args.lr_decay
    amsgrad = args.amsgrad
    eps = args.eps
    betas = (args.beta1, args.beta2)
    warmup_steps = args.warmup_steps
    weight_decay = args.weight_decay
    grad_clip = args.grad_clip

    loss_ty_token = args.loss_type == 'token'
    unk_replace = args.unk_replace
    freeze = args.freeze

    model_path = args.model_path
    model_name = os.path.join(model_path, 'model.pt')
    punctuation = args.punctuation

    word_embedding = args.word_embedding
    word_path = args.word_path
    char_embedding = args.char_embedding
    char_path = args.char_path

    print(args)

    word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path)
    char_dict = None
    if char_embedding != 'random':
        char_dict, char_dim = utils.load_embedding_dict(
            char_embedding, char_path)
    else:
        char_dict = None
        char_dim = None

    logger.info("Creating Alphabets")
    alphabet_path = os.path.join(model_path, 'alphabets')
    word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_data.create_alphabets(
        alphabet_path,
        train_path,
        data_paths=[dev_path, test_path],
        embedd_dict=word_dict,
        max_vocabulary_size=200000)

    num_words = word_alphabet.size()
    num_chars = char_alphabet.size()
    num_pos = pos_alphabet.size()
    num_types = type_alphabet.size()

    logger.info("Word Alphabet Size: %d" % num_words)
    logger.info("Character Alphabet Size: %d" % num_chars)
    logger.info("POS Alphabet Size: %d" % num_pos)
    logger.info("Type Alphabet Size: %d" % num_types)

    result_path = os.path.join(model_path, 'tmp')
    if not os.path.exists(result_path):
        os.makedirs(result_path)

    punct_set = None
    if punctuation is not None:
        punct_set = set(punctuation)
        logger.info("punctuations(%d): %s" %
                    (len(punct_set), ' '.join(punct_set)))

    def construct_word_embedding_table():
        scale = np.sqrt(3.0 / word_dim)
        table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32)
        table[conllx_data.UNK_ID, :] = np.zeros([1, word_dim]).astype(
            np.float32) if freeze else np.random.uniform(
                -scale, scale, [1, word_dim]).astype(np.float32)
        oov = 0
        for word, index in word_alphabet.items():
            if word in word_dict:
                embedding = word_dict[word]
            elif word.lower() in word_dict:
                embedding = word_dict[word.lower()]
            else:
                embedding = np.zeros([1, word_dim]).astype(
                    np.float32) if freeze else np.random.uniform(
                        -scale, scale, [1, word_dim]).astype(np.float32)
                oov += 1
            table[index, :] = embedding
        print('word OOV: %d' % oov)
        return torch.from_numpy(table)

    def construct_char_embedding_table():
        if char_dict is None:
            return None

        scale = np.sqrt(3.0 / char_dim)
        table = np.empty([num_chars, char_dim], dtype=np.float32)
        table[conllx_data.UNK_ID, :] = np.random.uniform(
            -scale, scale, [1, char_dim]).astype(np.float32)
        oov = 0
        for char, index, in char_alphabet.items():
            if char in char_dict:
                embedding = char_dict[char]
            else:
                embedding = np.random.uniform(-scale, scale,
                                              [1, char_dim]).astype(np.float32)
                oov += 1
            table[index, :] = embedding
        print('character OOV: %d' % oov)
        return torch.from_numpy(table)

    word_table = construct_word_embedding_table()
    char_table = construct_char_embedding_table()

    logger.info("constructing network...")

    hyps = json.load(open(args.config, 'r'))
    json.dump(hyps,
              open(os.path.join(model_path, 'config.json'), 'w'),
              indent=2)
    model_type = hyps['model']
    assert model_type in ['DeepBiAffine', 'NeuroMST', 'StackPtr']
    assert word_dim == hyps['word_dim']
    if char_dim is not None:
        assert char_dim == hyps['char_dim']
    else:
        char_dim = hyps['char_dim']
    use_pos = hyps['pos']
    pos_dim = hyps['pos_dim']
    mode = hyps['rnn_mode']
    hidden_size = hyps['hidden_size']
    arc_space = hyps['arc_space']
    type_space = hyps['type_space']
    p_in = hyps['p_in']
    p_out = hyps['p_out']
    p_rnn = hyps['p_rnn']
    activation = hyps['activation']
    prior_order = None

    alg = 'transition' if model_type == 'StackPtr' else 'graph'
    if model_type == 'DeepBiAffine':
        num_layers = hyps['num_layers']
        network = DeepBiAffine(word_dim,
                               num_words,
                               char_dim,
                               num_chars,
                               pos_dim,
                               num_pos,
                               mode,
                               hidden_size,
                               num_layers,
                               num_types,
                               arc_space,
                               type_space,
                               embedd_word=word_table,
                               embedd_char=char_table,
                               p_in=p_in,
                               p_out=p_out,
                               p_rnn=p_rnn,
                               pos=use_pos,
                               activation=activation)
    elif model_type == 'NeuroMST':
        num_layers = hyps['num_layers']
        network = NeuroMST(word_dim,
                           num_words,
                           char_dim,
                           num_chars,
                           pos_dim,
                           num_pos,
                           mode,
                           hidden_size,
                           num_layers,
                           num_types,
                           arc_space,
                           type_space,
                           embedd_word=word_table,
                           embedd_char=char_table,
                           p_in=p_in,
                           p_out=p_out,
                           p_rnn=p_rnn,
                           pos=use_pos,
                           activation=activation)
    elif model_type == 'StackPtr':
        encoder_layers = hyps['encoder_layers']
        decoder_layers = hyps['decoder_layers']
        num_layers = (encoder_layers, decoder_layers)
        prior_order = hyps['prior_order']
        grandPar = hyps['grandPar']
        sibling = hyps['sibling']
        network = StackPtrNet(word_dim,
                              num_words,
                              char_dim,
                              num_chars,
                              pos_dim,
                              num_pos,
                              mode,
                              hidden_size,
                              encoder_layers,
                              decoder_layers,
                              num_types,
                              arc_space,
                              type_space,
                              embedd_word=word_table,
                              embedd_char=char_table,
                              prior_order=prior_order,
                              activation=activation,
                              p_in=p_in,
                              p_out=p_out,
                              p_rnn=p_rnn,
                              pos=use_pos,
                              grandPar=grandPar,
                              sibling=sibling)
    else:
        raise RuntimeError('Unknown model type: %s' % model_type)

    if freeze:
        freeze_embedding(network.word_embed)

    network = network.to(device)
    model = "{}-{}".format(model_type, mode)
    logger.info("Network: %s, num_layer=%s, hidden=%d, act=%s" %
                (model, num_layers, hidden_size, activation))
    logger.info("dropout(in, out, rnn): %s(%.2f, %.2f, %s)" %
                ('variational', p_in, p_out, p_rnn))
    logger.info('# of Parameters: %d' %
                (sum([param.numel() for param in network.parameters()])))

    logger.info("Reading Data")
    if alg == 'graph':
        data_train = conllx_data.read_bucketed_data(train_path,
                                                    word_alphabet,
                                                    char_alphabet,
                                                    pos_alphabet,
                                                    type_alphabet,
                                                    symbolic_root=True)
        data_dev = conllx_data.read_data(dev_path,
                                         word_alphabet,
                                         char_alphabet,
                                         pos_alphabet,
                                         type_alphabet,
                                         symbolic_root=True)
        data_test = conllx_data.read_data(test_path,
                                          word_alphabet,
                                          char_alphabet,
                                          pos_alphabet,
                                          type_alphabet,
                                          symbolic_root=True)
    else:
        data_train = conllx_stacked_data.read_bucketed_data(
            train_path,
            word_alphabet,
            char_alphabet,
            pos_alphabet,
            type_alphabet,
            prior_order=prior_order)
        data_dev = conllx_stacked_data.read_data(dev_path,
                                                 word_alphabet,
                                                 char_alphabet,
                                                 pos_alphabet,
                                                 type_alphabet,
                                                 prior_order=prior_order)
        data_test = conllx_stacked_data.read_data(test_path,
                                                  word_alphabet,
                                                  char_alphabet,
                                                  pos_alphabet,
                                                  type_alphabet,
                                                  prior_order=prior_order)
    num_data = sum(data_train[1])
    logger.info("training: #training data: %d, batch: %d, unk replace: %.2f" %
                (num_data, batch_size, unk_replace))

    pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet,
                               type_alphabet)
    gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet,
                               type_alphabet)
    optimizer, scheduler = get_optimizer(network.parameters(), optim,
                                         learning_rate, lr_decay, betas, eps,
                                         amsgrad, weight_decay, warmup_steps)

    best_ucorrect = 0.0
    best_lcorrect = 0.0
    best_ucomlpete = 0.0
    best_lcomplete = 0.0

    best_ucorrect_nopunc = 0.0
    best_lcorrect_nopunc = 0.0
    best_ucomlpete_nopunc = 0.0
    best_lcomplete_nopunc = 0.0
    best_root_correct = 0.0
    best_total = 0
    best_total_nopunc = 0
    best_total_inst = 0
    best_total_root = 0

    best_epoch = 0

    test_ucorrect = 0.0
    test_lcorrect = 0.0
    test_ucomlpete = 0.0
    test_lcomplete = 0.0

    test_ucorrect_nopunc = 0.0
    test_lcorrect_nopunc = 0.0
    test_ucomlpete_nopunc = 0.0
    test_lcomplete_nopunc = 0.0
    test_root_correct = 0.0
    test_total = 0
    test_total_nopunc = 0
    test_total_inst = 0
    test_total_root = 0

    patient = 0
    beam = args.beam
    reset = args.reset
    num_batches = num_data // batch_size + 1
    if optim == 'adam':
        opt_info = 'adam, betas=(%.1f, %.3f), eps=%.1e, amsgrad=%s' % (
            betas[0], betas[1], eps, amsgrad)
    else:
        opt_info = 'sgd, momentum=0.9, nesterov=True'
    for epoch in range(1, num_epochs + 1):
        start_time = time.time()
        train_loss = 0.
        train_arc_loss = 0.
        train_type_loss = 0.
        num_insts = 0
        num_words = 0
        num_back = 0
        num_nans = 0
        network.train()
        lr = scheduler.get_lr()[0]
        print(
            'Epoch %d (%s, lr=%.6f, lr decay=%.6f, grad clip=%.1f, l2=%.1e): '
            % (epoch, opt_info, lr, lr_decay, grad_clip, weight_decay))
        if args.cuda:
            torch.cuda.empty_cache()
        gc.collect()
        with torch.autograd.set_detect_anomaly(True):
            for step, data in enumerate(
                    iterate_data(data_train,
                                 batch_size,
                                 bucketed=True,
                                 unk_replace=unk_replace,
                                 shuffle=True)):
                optimizer.zero_grad()
                bert_words = data["BERT_WORD"].to(device)
                sub_word_idx = data["SUB_IDX"].to(device)
                words = data['WORD'].to(device)
                chars = data['CHAR'].to(device)
                postags = data['POS'].to(device)
                heads = data['HEAD'].to(device)
                nbatch = words.size(0)
                if alg == 'graph':
                    types = data['TYPE'].to(device)
                    masks = data['MASK'].to(device)
                    nwords = masks.sum() - nbatch
                    BERT = True
                    if BERT:
                        loss_arc, loss_type = network.loss(bert_words,
                                                           sub_word_idx,
                                                           words,
                                                           chars,
                                                           postags,
                                                           heads,
                                                           types,
                                                           mask=masks)
                    else:
                        loss_arc, loss_type = network.loss(words,
                                                           chars,
                                                           postags,
                                                           heads,
                                                           types,
                                                           mask=masks)
                else:
                    masks_enc = data['MASK_ENC'].to(device)
                    masks_dec = data['MASK_DEC'].to(device)
                    stacked_heads = data['STACK_HEAD'].to(device)
                    children = data['CHILD'].to(device)
                    siblings = data['SIBLING'].to(device)
                    stacked_types = data['STACK_TYPE'].to(device)
                    nwords = masks_enc.sum() - nbatch
                    loss_arc, loss_type = network.loss(words,
                                                       chars,
                                                       postags,
                                                       heads,
                                                       stacked_heads,
                                                       children,
                                                       siblings,
                                                       stacked_types,
                                                       mask_e=masks_enc,
                                                       mask_d=masks_dec)
                loss_arc = loss_arc.sum()
                loss_type = loss_type.sum()
                loss_total = loss_arc + loss_type

                # print("loss", loss_arc, loss_type, loss_total)
                if loss_ty_token:
                    loss = loss_total.div(nwords)
                else:
                    loss = loss_total.div(nbatch)
                loss.backward()
                if grad_clip > 0:
                    grad_norm = clip_grad_norm_(network.parameters(),
                                                grad_clip)
                else:
                    grad_norm = total_grad_norm(network.parameters())

                if math.isnan(grad_norm):
                    num_nans += 1
                else:
                    optimizer.step()
                    scheduler.step()

                    with torch.no_grad():
                        num_insts += nbatch
                        num_words += nwords
                        train_loss += loss_total.item()
                        train_arc_loss += loss_arc.item()
                        train_type_loss += loss_type.item()

                # update log
                if step % 100 == 0:
                    torch.cuda.empty_cache()
                    sys.stdout.write("\b" * num_back)
                    sys.stdout.write(" " * num_back)
                    sys.stdout.write("\b" * num_back)
                    curr_lr = scheduler.get_lr()[0]
                    num_insts = max(num_insts, 1)
                    num_words = max(num_words, 1)
                    log_info = '[%d/%d (%.0f%%) lr=%.6f (%d)] loss: %.4f (%.4f), arc: %.4f (%.4f), type: %.4f (%.4f)' % (
                        step, num_batches, 100. * step / num_batches, curr_lr,
                        num_nans, train_loss / num_insts,
                        train_loss / num_words, train_arc_loss / num_insts,
                        train_arc_loss / num_words, train_type_loss /
                        num_insts, train_type_loss / num_words)
                    sys.stdout.write(log_info)
                    sys.stdout.flush()
                    num_back = len(log_info)

            sys.stdout.write("\b" * num_back)
            sys.stdout.write(" " * num_back)
            sys.stdout.write("\b" * num_back)
            print(
                'total: %d (%d), loss: %.4f (%.4f), arc: %.4f (%.4f), type: %.4f (%.4f), time: %.2fs'
                % (num_insts, num_words, train_loss / num_insts,
                   train_loss / num_words, train_arc_loss / num_insts,
                   train_arc_loss / num_words, train_type_loss / num_insts,
                   train_type_loss / num_words, time.time() - start_time))
            print('-' * 125)

            # evaluate performance on dev data
            with torch.no_grad():
                pred_filename = os.path.join(result_path, 'pred_dev%d' % epoch)
                pred_writer.start(pred_filename)
                gold_filename = os.path.join(result_path, 'gold_dev%d' % epoch)
                gold_writer.start(gold_filename)

                print('Evaluating dev:')
                dev_stats, dev_stats_nopunct, dev_stats_root = eval(
                    alg,
                    data_dev,
                    network,
                    pred_writer,
                    gold_writer,
                    punct_set,
                    word_alphabet,
                    pos_alphabet,
                    device,
                    beam=beam)

                pred_writer.close()
                gold_writer.close()

                dev_ucorr, dev_lcorr, dev_ucomlpete, dev_lcomplete, dev_total = dev_stats
                dev_ucorr_nopunc, dev_lcorr_nopunc, dev_ucomlpete_nopunc, dev_lcomplete_nopunc, dev_total_nopunc = dev_stats_nopunct
                dev_root_corr, dev_total_root, dev_total_inst = dev_stats_root

                if best_ucorrect_nopunc + best_lcorrect_nopunc < dev_ucorr_nopunc + dev_lcorr_nopunc:
                    best_ucorrect_nopunc = dev_ucorr_nopunc
                    best_lcorrect_nopunc = dev_lcorr_nopunc
                    best_ucomlpete_nopunc = dev_ucomlpete_nopunc
                    best_lcomplete_nopunc = dev_lcomplete_nopunc

                    best_ucorrect = dev_ucorr
                    best_lcorrect = dev_lcorr
                    best_ucomlpete = dev_ucomlpete
                    best_lcomplete = dev_lcomplete

                    best_root_correct = dev_root_corr
                    best_total = dev_total
                    best_total_nopunc = dev_total_nopunc
                    best_total_root = dev_total_root
                    best_total_inst = dev_total_inst

                    best_epoch = epoch
                    patient = 0
                    torch.save(network.state_dict(), model_name)

                    pred_filename = os.path.join(result_path,
                                                 'pred_test%d' % epoch)
                    pred_writer.start(pred_filename)
                    gold_filename = os.path.join(result_path,
                                                 'gold_test%d' % epoch)
                    gold_writer.start(gold_filename)

                    print('Evaluating test:')
                    test_stats, test_stats_nopunct, test_stats_root = eval(
                        alg,
                        data_test,
                        network,
                        pred_writer,
                        gold_writer,
                        punct_set,
                        word_alphabet,
                        pos_alphabet,
                        device,
                        beam=beam)

                    test_ucorrect, test_lcorrect, test_ucomlpete, test_lcomplete, test_total = test_stats
                    test_ucorrect_nopunc, test_lcorrect_nopunc, test_ucomlpete_nopunc, test_lcomplete_nopunc, test_total_nopunc = test_stats_nopunct
                    test_root_correct, test_total_root, test_total_inst = test_stats_root

                    pred_writer.close()
                    gold_writer.close()
                else:
                    patient += 1

                print('-' * 125)
                print(
                    'best dev  W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                    % (best_ucorrect, best_lcorrect, best_total,
                       best_ucorrect * 100 / best_total, best_lcorrect * 100 /
                       best_total, best_ucomlpete * 100 / dev_total_inst,
                       best_lcomplete * 100 / dev_total_inst, best_epoch))
                print(
                    'best dev  Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                    % (best_ucorrect_nopunc, best_lcorrect_nopunc,
                       best_total_nopunc, best_ucorrect_nopunc * 100 /
                       best_total_nopunc, best_lcorrect_nopunc * 100 /
                       best_total_nopunc, best_ucomlpete_nopunc * 100 /
                       best_total_inst, best_lcomplete_nopunc * 100 /
                       best_total_inst, best_epoch))
                print(
                    'best dev  Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)'
                    % (best_root_correct, best_total_root,
                       best_root_correct * 100 / best_total_root, best_epoch))
                print('-' * 125)
                print(
                    'best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                    % (test_ucorrect, test_lcorrect, test_total,
                       test_ucorrect * 100 / test_total, test_lcorrect * 100 /
                       test_total, test_ucomlpete * 100 / test_total_inst,
                       test_lcomplete * 100 / test_total_inst, best_epoch))
                print(
                    'best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                    % (test_ucorrect_nopunc, test_lcorrect_nopunc,
                       test_total_nopunc, test_ucorrect_nopunc * 100 /
                       test_total_nopunc, test_lcorrect_nopunc * 100 /
                       test_total_nopunc, test_ucomlpete_nopunc * 100 /
                       test_total_inst, test_lcomplete_nopunc * 100 /
                       test_total_inst, best_epoch))
                print(
                    'best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)'
                    % (test_root_correct, test_total_root,
                       test_root_correct * 100 / test_total_root, best_epoch))
                print('=' * 125)

                if patient >= reset:
                    logger.info('reset optimizer momentums')
                    network.load_state_dict(
                        torch.load(model_name, map_location=device))
                    scheduler.reset_state()
                    patient = 0