Пример #1
0
  def __incremental_embedding_update(self,resource,args):
    
    n = resource.get('n')
    d = resource.get('d')
    S = resource.get_list('S')
    verbose = False
    
    X = numpy.array(resource.get('X'))
    X2 = numpy.array(resource.get('X2'))
    # set maximum time allowed to update embedding
    t_max = 1.0
    epsilon = 0.00001 # a relative convergence criterion, see computeEmbeddingWithGD documentation
    alpha = 1
    
    t_start = time.time()
    X,emp_loss_new,hinge_loss_new,log_loss_new,acc = utilsSTE.computeEmbeddingWithGD(X,S,alpha,max_iters=1, epsilon=epsilon,verbose=verbose)
    _te = time.time()
    k = 1
    while (time.time()-t_start<.5*t_max) and (acc > epsilon):
      # take a single gradient step
      ts = time.time()
      X,emp_loss_new,hinge_loss_new,log_loss_new,acc = utilsSTE.computeEmbeddingWithGD(X,S,alpha,max_iters=2**k, epsilon=epsilon,verbose=verbose)
      k+=1
      if verbose==True:
        print "Incremental embedding time of X gradient step at iteration %s is %s"%(str(k),str(time.time()-ts))
        
    if d==2:
      X2 = X
    else:
      t_start = time.time()   
      X2,emp_loss_new,hinge_loss_new,log_loss_new,acc = utilsSTE.computeEmbeddingWithGD(X2,S,alpha,max_iters=1, epsilon=epsilon,verbose=verbose)
      k = 1
      while (time.time()-t_start<.5*t_max) and (acc > epsilon):      
        # take a single gradient step
        ts = time.time()
        X2,emp_loss_new,hinge_loss_new,log_loss_new,acc = utilsSTE.computeEmbeddingWithGD(X2,S,alpha,max_iters=2**k, epsilon=epsilon, verbose=verbose)
        k+=1
        if verbose:
          print "Incremental embedding time of X2 gradient step at itration %s is %s"%(str(k),str(time.time()-ts))

      t_s = time.time()
      tau = utilsSTE.getSTETauDistribution(X,S,alpha)
      if verbose:
        print "Time to compute tau %s"%str(time.time()-t_s)

    resource.set('X',X.tolist())
    resource.set('X2',X2.tolist())

    _ts = time.time()
    tau = utilsSTE.getSTETauDistribution(X,S,alpha)
    _te = time.time()

    resource.set('tau',tau.tolist())
Пример #2
0
  def __full_embedding_update(self,resource,args):
    n = resource.get('n')
    d = resource.get('d')
    S = resource.get_list('S')
    verbose=False

    X_old = numpy.array(resource.get('X'))
    X2_old = numpy.array(resource.get('X2'))
    # set maximum time allowed to update embedding
    t_max = 5.0
    epsilon = 0.00001 # a relative convergence criterion, see computeEmbeddingWithGD documentation
    alpha = 1

    emp_loss_old,hinge_loss_old,log_loss_old = utilsSTE.getLoss(X_old,S,alpha)
    X,tmp = utilsSTE.computeEmbeddingWithEpochSGD(n,d,S,alpha,max_num_passes=16,epsilon=0,verbose=verbose)
    t_start = time.time()
    X,emp_loss_new,hinge_loss_new,log_loss_new,acc = utilsSTE.computeEmbeddingWithGD(X,S,alpha,max_iters=1, epsilon=epsilon,verbose=verbose)
    k = 1
    while (time.time()-t_start<.5*t_max) and (acc > epsilon):
      # take a single gradient step
      X,emp_loss_new,hinge_loss_new,log_loss_new,acc = utilsSTE.computeEmbeddingWithGD(X,S,alpha,max_iters=2**k, epsilon=epsilon,verbose=verbose)
      k += 1
    emp_loss_new,hinge_loss_new,log_loss_new = utilsSTE.getLoss(X,S, alpha)
    if emp_loss_old < emp_loss_new:
      X = X_old

    if d==2:
      X2 = X
    else:
      emp_loss_old,hinge_loss_old,log_loss_old = utilsSTE.getLoss(X2_old,S,alpha)
      X2,tmp = utilsSTE.computeEmbeddingWithEpochSGD(n,2,S,alpha,max_num_passes=16,epsilon=0,verbose=verbose)
      t_start = time.time()
      X2,emp_loss_new,hinge_loss_new,log_loss_new,acc = utilsSTE.computeEmbeddingWithGD(X2,S,alpha,max_iters=1, epsilon=epsilon,verbose=verbose)
      k = 1
      while (time.time()-t_start<.5*t_max) and (acc > epsilon):      
        # take a single gradient step
        X2,emp_loss_new,hinge_loss_new,log_loss_new,acc = utilsSTE.computeEmbeddingWithGD(X2,S,alpha,max_iters=2**k, epsilon=epsilon,verbose=verbose)
        k += 1
      emp_loss_new,hinge_loss_new,log_loss_new = utilsSTE.getLoss(X2,S, alpha)
      if emp_loss_old < emp_loss_new:
        X2 = X2_old
    
    _ts = time.time()
    tau = utilsSTE.getSTETauDistribution(X,S,alpha)
    _te = time.time()
    resource.set('X',X.tolist())
    resource.set('X2',X2.tolist())
    resource.set('tau',tau.tolist())
Пример #3
0
    def __full_embedding_update(self, resource, args):
        n = resource.get('n')
        d = resource.get('d')
        S = resource.get_list('S')
        verbose = False

        X_old = numpy.array(resource.get('X'))
        X2_old = numpy.array(resource.get('X2'))
        # set maximum time allowed to update embedding
        t_max = 5.0
        epsilon = 0.00001  # a relative convergence criterion, see computeEmbeddingWithGD documentation
        alpha = 1

        emp_loss_old, hinge_loss_old, log_loss_old = utilsSTE.getLoss(
            X_old, S, alpha)
        X, tmp = utilsSTE.computeEmbeddingWithEpochSGD(n,
                                                       d,
                                                       S,
                                                       alpha,
                                                       max_num_passes=16,
                                                       epsilon=0,
                                                       verbose=verbose)
        t_start = time.time()
        X, emp_loss_new, hinge_loss_new, log_loss_new, acc = utilsSTE.computeEmbeddingWithGD(
            X, S, alpha, max_iters=1, epsilon=epsilon, verbose=verbose)
        k = 1
        while (time.time() - t_start < .5 * t_max) and (acc > epsilon):
            # take a single gradient step
            X, emp_loss_new, hinge_loss_new, log_loss_new, acc = utilsSTE.computeEmbeddingWithGD(
                X, S, alpha, max_iters=2**k, epsilon=epsilon, verbose=verbose)
            k += 1
        emp_loss_new, hinge_loss_new, log_loss_new = utilsSTE.getLoss(
            X, S, alpha)
        if emp_loss_old < emp_loss_new:
            X = X_old

        if d == 2:
            X2 = X
        else:
            emp_loss_old, hinge_loss_old, log_loss_old = utilsSTE.getLoss(
                X2_old, S, alpha)
            X2, tmp = utilsSTE.computeEmbeddingWithEpochSGD(n,
                                                            2,
                                                            S,
                                                            alpha,
                                                            max_num_passes=16,
                                                            epsilon=0,
                                                            verbose=verbose)
            t_start = time.time()
            X2, emp_loss_new, hinge_loss_new, log_loss_new, acc = utilsSTE.computeEmbeddingWithGD(
                X2, S, alpha, max_iters=1, epsilon=epsilon, verbose=verbose)
            k = 1
            while (time.time() - t_start < .5 * t_max) and (acc > epsilon):
                # take a single gradient step
                X2, emp_loss_new, hinge_loss_new, log_loss_new, acc = utilsSTE.computeEmbeddingWithGD(
                    X2,
                    S,
                    alpha,
                    max_iters=2**k,
                    epsilon=epsilon,
                    verbose=verbose)
                k += 1
            emp_loss_new, hinge_loss_new, log_loss_new = utilsSTE.getLoss(
                X2, S, alpha)
            if emp_loss_old < emp_loss_new:
                X2 = X2_old

        _ts = time.time()
        tau = utilsSTE.getSTETauDistribution(X, S, alpha)
        _te = time.time()
        resource.set('X', X.tolist())
        resource.set('X2', X2.tolist())
        resource.set('tau', tau.tolist())
Пример #4
0
    def __incremental_embedding_update(self, resource, args):

        n = resource.get('n')
        d = resource.get('d')
        S = resource.get_list('S')
        verbose = False

        X = numpy.array(resource.get('X'))
        X2 = numpy.array(resource.get('X2'))
        # set maximum time allowed to update embedding
        t_max = 1.0
        epsilon = 0.00001  # a relative convergence criterion, see computeEmbeddingWithGD documentation
        alpha = 1

        t_start = time.time()
        X, emp_loss_new, hinge_loss_new, log_loss_new, acc = utilsSTE.computeEmbeddingWithGD(
            X, S, alpha, max_iters=1, epsilon=epsilon, verbose=verbose)
        _te = time.time()
        k = 1
        while (time.time() - t_start < .5 * t_max) and (acc > epsilon):
            # take a single gradient step
            ts = time.time()
            X, emp_loss_new, hinge_loss_new, log_loss_new, acc = utilsSTE.computeEmbeddingWithGD(
                X, S, alpha, max_iters=2**k, epsilon=epsilon, verbose=verbose)
            k += 1
            if verbose == True:
                print "Incremental embedding time of X gradient step at iteration %s is %s" % (
                    str(k), str(time.time() - ts))

        if d == 2:
            X2 = X
        else:
            t_start = time.time()
            X2, emp_loss_new, hinge_loss_new, log_loss_new, acc = utilsSTE.computeEmbeddingWithGD(
                X2, S, alpha, max_iters=1, epsilon=epsilon, verbose=verbose)
            k = 1
            while (time.time() - t_start < .5 * t_max) and (acc > epsilon):
                # take a single gradient step
                ts = time.time()
                X2, emp_loss_new, hinge_loss_new, log_loss_new, acc = utilsSTE.computeEmbeddingWithGD(
                    X2,
                    S,
                    alpha,
                    max_iters=2**k,
                    epsilon=epsilon,
                    verbose=verbose)
                k += 1
                if verbose:
                    print "Incremental embedding time of X2 gradient step at itration %s is %s" % (
                        str(k), str(time.time() - ts))

            t_s = time.time()
            tau = utilsSTE.getSTETauDistribution(X, S, alpha)
            if verbose:
                print "Time to compute tau %s" % str(time.time() - t_s)

        resource.set('X', X.tolist())
        resource.set('X2', X2.tolist())

        _ts = time.time()
        tau = utilsSTE.getSTETauDistribution(X, S, alpha)
        _te = time.time()

        resource.set('tau', tau.tolist())