h0 = 0.25 # coarsest mesh size p = 1 # polynomial degree if example[3:] == 'triangular': mesh = ngs.Mesh(unit_square.GenerateMesh(maxh=h0)) elif example[3:] == 'rectangular': mesh = ngs.Mesh(unit_square.GenerateMesh(maxh=h0, quad_dominated=True)) q_zero = 'bottom' # mesh boundary parts where q = 0, mu_zero = 'bottom|right|left' # where mu = 0. x = ngs.x t = ngs.y cwave = 1 f = 2*pi*pi*sin(pi*x)*cos(2*pi*t) + pi*pi*sin(pi*x)*sin(pi*t)*sin(pi*t) F = CoefficientFunction((0, f)) exactu = CoefficientFunction((pi*cos(pi*x)*sin(pi*t)*sin(pi*t), pi*sin(pi*x)*sin(2*pi*t))) hs = [] er = [] for l in range(maxr): h = h0 * 2**(-l) hs.append(h) e, *rest = solvewavedirect(mesh, p, F, q_zero, mu_zero, cwave, exactu) # e, *rest = solvewave(mesh, p, F, q_zero, mu_zero, cwave, exactu) er.append(e) mesh.Refine() print_rates(er, hs)
input("x-periodic quad mesh -- press any key to continue -- ") mesh = MakeStructured2DMesh(quads=False, nx=16, ny=4, periodic_x=False, periodic_y=True) Draw(mesh) input("y-periodic non-uniform trig mesh -- press any key to continue -- ") mesh = MakeStructured2DMesh(quads=True, nx=32, ny=16, mapping=lambda x, y: ((1.1 + sin(pi * (y - 0.5))) * sin(pi * x), (1.1 + sin(pi * (y - 0.5))) * cos(pi * x))) Draw(mesh) input( "structured quad half circle with a whole -- press any key to continue -- " ) mesh = MakeHexMesh(nx=8) Draw(mesh) input("simple cube mesh -- press any key to continue -- ") mesh = MakeHexMesh(nx=8, periodic_x=True, periodic_y=True, periodic_z=True) Draw(mesh) input("periodic cube mesh -- press any key to continue -- ") mesh = MakeStructured3DMesh(hexes=False, nx=3,
def solve(self): # disable garbage collector # --------------------------------------------------------------------# gc.disable() while(gc.isenabled()): time.sleep(0.1) # --------------------------------------------------------------------# # measure how much memory is used until here process = psutil.Process() memstart = process.memory_info().vms # starts timer tstart = time.time() if self.show_gui: import netgen.gui # create mesh with initial size 0.1 geo = geom2d.SplineGeometry() p1 = geo.AppendPoint (-2,-2) p2 = geo.AppendPoint (2,-2) p3 = geo.AppendPoint (2,2) p4 = geo.AppendPoint (-2,2) geo.Append (["line", p1, p2]) geo.Append (["line", p2, p3]) geo.Append (["line", p3, p4]) geo.Append (["line", p4, p1]) self._mesh = ngs.Mesh(geo.GenerateMesh(maxh=0.1)) #create finite element space self._fes = ngs.H1(self._mesh, order=2, dirichlet=".*", autoupdate=True) # test and trail function u = self._fes.TrialFunction() v = self._fes.TestFunction() # create bilinear form and enable static condensation self._a = ngs.BilinearForm(self._fes, condense=True) self._a += ngs.grad(u)*ngs.grad(v)*ngs.dx # creat linear functional and apply RHS self._f = ngs.LinearForm(self._fes) self._f += - ( \ 2*ngs.exp(-2 * (ngs.x**2 + ngs.y**2))*(2 * ngs.sin(-2 * (ngs.x**2 + ngs.y**2)) + 2 * (1-8 * ngs.x**2)*ngs.cos(-2 * (ngs.x**2 + ngs.y**2))) + \ 2*ngs.exp(-2 * (ngs.x**2 + ngs.y**2))*(2 * ngs.sin(-2 * (ngs.x**2 + ngs.y**2)) + 2 * (1-8 * ngs.y**2)*ngs.cos(-2 * (ngs.x**2 + ngs.y**2))) + \ 2*ngs.exp(-1 * (ngs.x**2 + ngs.y**2))*(1 * ngs.sin(-1 * (ngs.x**2 + ngs.y**2)) + 1 * (1-4 * ngs.x**2)*ngs.cos(-1 * (ngs.x**2 + ngs.y**2))) + \ 2*ngs.exp(-1 * (ngs.x**2 + ngs.y**2))*(1 * ngs.sin(-1 * (ngs.x**2 + ngs.y**2)) + 1 * (1-4 * ngs.y**2)*ngs.cos(-1 * (ngs.x**2 + ngs.y**2))) + \ 2*ngs.exp(-0.1*(ngs.x**2 + ngs.y**2))*(0.1*ngs.sin(-0.1*(ngs.x**2 + ngs.y**2)) + 0.1*(1-0.4*ngs.x**2)*ngs.cos(-0.1*(ngs.x**2 + ngs.y**2))) + \ 2*ngs.exp(-0.1*(ngs.x**2 + ngs.y**2))*(0.1*ngs.sin(-0.1*(ngs.x**2 + ngs.y**2)) + 0.1*(1-0.4*ngs.y**2)*ngs.cos(-0.1*(ngs.x**2 + ngs.y**2))) )*v*ngs.dx # preconditioner: multigrid - what prerequisits must the problem have? self._c = ngs.Preconditioner(self._a,"multigrid") # create grid function that holds the solution and set the boundary to 0 self._gfu = ngs.GridFunction(self._fes, autoupdate=True) # solution self._g = self._ngs_ex self._gfu.Set(self._g, definedon=self._mesh.Boundaries(".*")) # draw grid function in gui if self.show_gui: ngs.Draw(self._gfu) # create Hcurl space for flux calculation and estimate error self._space_flux = ngs.HDiv(self._mesh, order=2, autoupdate=True) self._gf_flux = ngs.GridFunction(self._space_flux, "flux", autoupdate=True) # TaskManager starts threads that (standard thread nr is numer of cores) #with ngs.TaskManager(): # this is the adaptive loop while self._fes.ndof < self.max_ndof: self._solveStep() self._estimateError() self._mesh.Refine() # since the adaptive loop stopped with a mesh refinement, the gfu must be # calculated one last time self._solveStep() if self.show_gui: ngs.Draw(self._gfu) # set measured exectution time self._exec_time = time.time() - tstart # set measured used memory memstop = process.memory_info().vms - memstart self._mem_consumption = memstop # enable garbage collector # --------------------------------------------------------------------# gc.enable() gc.collect()
u = ngs.GridFunction(fem_space) u.vec.FV().NumPy()[:] = np.array(soln_fem.real, dtype=np.float_) #u_im=dolfin.Function(fenics_space) #u_im.vector()[:]=np.array(soln_fem.imag,dtype=np.float_) bem_soln = bempp.api.GridFunction(bc_space, coefficients=soln_bem) ns.append(fem_size) actual0 = bempp.api.GridFunction(bc_space, fun=zero) errs.append((actual0 - bem_soln).l2_norm()) actual_u = ngs.CoefficientFunction((ngs.cos(k * ngs.z), 0, 0)) actual_curl_u = ngs.CoefficientFunction((0, -k * ngs.sin(k * ngs.z), 0)) actual_sol = np.concatenate([soln_fem, soln_bem]) from math import sqrt u_H1 = sqrt( abs( ngs.Integrate((actual_u - u) * (actual_u - u) + (actual_curl_u - u.Deriv())**2, mesh, order=10))) err2s.append(u_H1) print("ns: ", ns) print("Hcurl error:", err2s)
h0 = 0.25 # coarsest mesh size p = 1 # polynomial degree if example[3:] == 'triangular': mesh = ngs.Mesh(unit_square.GenerateMesh(maxh=h0)) elif example[3:] == 'rectangular': mesh = ngs.Mesh( unit_square.GenerateMesh(maxh=h0, quad_dominated=True)) q_zero = 'bottom' # mesh boundary parts where q = 0, mu_zero = 'bottom|right|left' # where mu = 0. x = ngs.x t = ngs.y cwave = 1 f = 2 * pi * pi * sin(pi * x) * cos(2 * pi * t) + pi * pi * sin( pi * x) * sin(pi * t) * sin(pi * t) F = CoefficientFunction((0, f)) exactu = CoefficientFunction( (pi * cos(pi * x) * sin(pi * t) * sin(pi * t), pi * sin(pi * x) * sin(2 * pi * t))) hs = [] er = [] for l in range(maxr): h = h0 * 2**(-l) hs.append(h) e, *rest = solvewavedirect(mesh, p, F, q_zero, mu_zero, cwave, exactu) # e, *rest = solvewave(mesh, p, F, q_zero, mu_zero, cwave, exactu) er.append(e)