Пример #1
0
def createSampleVolume( outputfile ):
  '''
  Create a sample volume which has a different value for each voxel.
  
  Then, save the volume.
  '''

  print Colors.PURPLE + 'Creating a sample volume (d:' + Colors.CYAN + str( SAMPLE_VOLUME_DIMENSION_X ) + ',' + str( SAMPLE_VOLUME_DIMENSION_Y ) + ',' + str( SAMPLE_VOLUME_DIMENSION_Z ) + Colors.PURPLE + ' s:' + Colors.CYAN + str( SAMPLE_VOLUME_SPACING_X ) + ',' + str( SAMPLE_VOLUME_SPACING_Y ) + ',' + str( SAMPLE_VOLUME_SPACING_Z ) + '): ' + Colors.ORANGE + outputfile + Colors.PURPLE + '..' + Colors._CLEAR

  testArr = numpy.zeros( ( SAMPLE_VOLUME_DIMENSION_X, SAMPLE_VOLUME_DIMENSION_Y, SAMPLE_VOLUME_DIMENSION_Z ) )

  r = 0
  for i in range( testArr.shape[0] ):
    for j in range( testArr.shape[1] ):
      for k in range( testArr.shape[2] ):
        r += 1
        testArr[i, j, k] = r

  img = Nifti1Image( testArr, None )
  hdr = img.get_header()
  hdr.set_zooms( [SAMPLE_VOLUME_SPACING_X, SAMPLE_VOLUME_SPACING_Y, SAMPLE_VOLUME_SPACING_Z] );
  hdr.set_xyzt_units( 1.0, 1.0 )

  save( img, outputfile )

  return testArr
Пример #2
0
def atlas_from_freesurfer_masks(sub,
                                mask_dir,
                                roi_ids,
                                rh_constant=200,
                                overwrite=False):
    '''
    Create atlas from individual binary masks produced by freesurfer's 'mri_label2vol' tool

    Args:
        sub (int):
            subject number
        mask_dir (str):
            path to subject's folder with freesurfer output
        roi_ids (dict):
            {target_ROI: Left Hemisphere ROI index}
        rh_constant (int):
            Right Hemisphere ROI index := Left Hemisphere ROI index + rh_constant
        overwrite (bool):
            If true: delete old atlas and create new one
            

    Returns:
        atlas (Nifti1Image):
            T1w Atlas with voxel values indicative of ROI identity (as defined in 'roi_ids')
    '''
    atlas_path = os.path.join(
        mask_dir, "sub-" + str(sub).zfill(2) + "_Mask_T1w_Glasser.nii.gz")

    if os.path.isfile(atlas_path) and not overwrite:
        atlas = nifti1.load(atlas_path)
    else:
        # create atlas
        hemi_dict = {'L': 'lh.L_', 'R': 'rh.R_'}
        hemi_add = {'L': 0, 'R': rh_constant}
        mask_array = []
        mask_array_tmp = []
        for roi in roi_ids.keys():
            for hemi in ['L', 'R']:
                mask_raw = nifti1.load(
                    os.path.join(mask_dir,
                                 hemi_dict[hemi] + roi + '_ROI.fbr.nii.gz'))
                if len(mask_array) == 0:
                    mask_array_tmp = mask_raw.get_fdata()
                    mask_array_tmp[
                        mask_array_tmp == 1] = roi_ids[roi][0] + hemi_add[
                            hemi]  # convert binary mask by assigning roi_id to masked voxels
                    mask_array = mask_array_tmp.copy()
                    freesurfer_affine = mask_raw.affine.copy()
                else:
                    mask_array_tmp = mask_raw.get_fdata()
                    mask_array[mask_array_tmp ==
                               1] = roi_ids[roi][0] + hemi_add[hemi]
        atlas = nifti1.Nifti1Image(mask_array, freesurfer_affine)
        nifti1.save(atlas, atlas_path)
    return atlas
Пример #3
0
 def rawToNifti(infile, sizefile=None, outfile=None, dimorder=None, diskorder='F', dtype=None, split4=False):
   """Converts a raw file to a NIfTI file.
   
   Arguments:
     infile:    Filename of a raw file.
     sizefile:  Filename of a size_info config file.  If None, attempts to find
                this file in the same directory as infile.
     outfile:   Filename (including .nii) of the NIfTI file to generate.
                If None, it will be generated from infile.
     dimorder:  Four-character string that is a permutation of "XYZI",
                indicating the dimension order of the image in "infile".
                  The purpose of this argument is to rearrange the order of the
                dimensions in the infile to match the NIfTI canonical order of
                (X, Y, Z, I), where I is the dimension along which multiple
                acquisitions are concatenated.
                  The default value, None, is equivalent to "XYZI".
                  Note that this argument will be overridden if the size_info
                file contains a "dimension_order" value.
     diskorder: A string, 'F' or 'C', representing the order in which the data
                values are stored in the raw file.
     dtype:     The numpy dtype for the infile.  If None, it is inferred from
                infile's extension.
     split4:    If True, output numbered 3-D images from 4-D input.
   """
   (raw, cfg) = readRawWithSizeInfo(infile, sizefile=sizefile, dtype=dtype,
                                    dimorder=dimorder, diskorder=diskorder,
                                    memorder='C')
   vox_sz = cfg['voxel_size_(mm)']
   
   # Rearrange dimensions.
   try:
     dimorder = cfg['dimension_order']
   except KeyError:
     if dimorder is None:
       dimorder = _miraw_helpers.DIM_DEFAULT_ORDER
   if not _miraw_helpers.isValidDimorder(dimorder):
     raise ValueError('"%s" is not a valid dimorder argument.'%repr(dimorder))
   raw_transp = raw.transpose(_miraw_helpers.dimorderToReverseDimmap(dimorder))
   
   if split4 and len(raw_transp.shape) == 4:
     raw_stack = [raw_transp[:,:,:,i] for i in range(raw_transp.shape[3])]
   else:
     raw_stack = [raw_transp]
   i = 0
   for img in raw_stack:
     nii = nifti1.Nifti1Pair(img, np.diag(vox_sz + [0.0]))
     nii.get_header().set_xyzt_units('mm')
     outfname = outfile
     if outfname is None:
       outfname = os.path.splitext(infile)[0] + '.nii'
     if split4:
       outfname = os.path.splitext(outfname)[0] + ('_%03i.nii' % i)
       i += 1
     nifti1.save(nii, outfname)
Пример #4
0
def test_save_load():
    shape = (2, 4, 6)
    npt = np.float32
    data = np.arange(np.prod(shape), dtype=npt).reshape(shape)
    affine = np.diag([1, 2, 3, 1])
    affine[:3,3] = [3,2,1]
    img = ni1.Nifti1Image(data, affine)
    img.set_data_dtype(npt)
    with InTemporaryDirectory() as pth:
        pth = mkdtemp()
        nifn = pjoin(pth, 'an_image.nii')
        sifn = pjoin(pth, 'another_image.img')
        ni1.save(img, nifn)
        re_img = nils.load(nifn)
        yield assert_true(isinstance(re_img, ni1.Nifti1Image))
        yield assert_array_equal(re_img.get_data(), data)
        yield assert_array_equal(re_img.get_affine(), affine)
        # These and subsequent del statements are to prevent confusing
        # windows errors when trying to open files or delete the
        # temporary directory. 
        del re_img
        try:
            import scipy.io
        except ImportError:
            # ignore if there is no matfile reader, and restart
            pass
        else:
            spm2.save(img, sifn)
            re_img2 = nils.load(sifn)
            yield assert_true(isinstance(re_img2, spm2.Spm2AnalyzeImage))
            yield assert_array_equal(re_img2.get_data(), data)
            yield assert_array_equal(re_img2.get_affine(), affine)
            del re_img2
            spm99.save(img, sifn)
            re_img3 = nils.load(sifn)
            yield assert_true(isinstance(re_img3,
                                         spm99.Spm99AnalyzeImage))
            yield assert_array_equal(re_img3.get_data(), data)
            yield assert_array_equal(re_img3.get_affine(), affine)
            ni1.save(re_img3, nifn)
            del re_img3
        re_img = nils.load(nifn)
        yield assert_true(isinstance(re_img, ni1.Nifti1Image))
        yield assert_array_equal(re_img.get_data(), data)
        yield assert_array_equal(re_img.get_affine(), affine)
        del re_img
Пример #5
0
def test_save_load():
    shape = (2, 4, 6)
    npt = np.float32
    data = np.arange(np.prod(shape), dtype=npt).reshape(shape)
    affine = np.diag([1, 2, 3, 1])
    affine[:3, 3] = [3, 2, 1]
    img = ni1.Nifti1Image(data, affine)
    img.set_data_dtype(npt)
    with InTemporaryDirectory() as pth:
        pth = mkdtemp()
        nifn = pjoin(pth, 'an_image.nii')
        sifn = pjoin(pth, 'another_image.img')
        ni1.save(img, nifn)
        re_img = nils.load(nifn)
        yield assert_true(isinstance(re_img, ni1.Nifti1Image))
        yield assert_array_equal(re_img.get_data(), data)
        yield assert_array_equal(re_img.get_affine(), affine)
        # These and subsequent del statements are to prevent confusing
        # windows errors when trying to open files or delete the
        # temporary directory.
        del re_img
        try:
            import scipy.io
        except ImportError:
            # ignore if there is no matfile reader, and restart
            pass
        else:
            spm2.save(img, sifn)
            re_img2 = nils.load(sifn)
            yield assert_true(isinstance(re_img2, spm2.Spm2AnalyzeImage))
            yield assert_array_equal(re_img2.get_data(), data)
            yield assert_array_equal(re_img2.get_affine(), affine)
            del re_img2
            spm99.save(img, sifn)
            re_img3 = nils.load(sifn)
            yield assert_true(isinstance(re_img3, spm99.Spm99AnalyzeImage))
            yield assert_array_equal(re_img3.get_data(), data)
            yield assert_array_equal(re_img3.get_affine(), affine)
            ni1.save(re_img3, nifn)
            del re_img3
        re_img = nils.load(nifn)
        yield assert_true(isinstance(re_img, ni1.Nifti1Image))
        yield assert_array_equal(re_img.get_data(), data)
        yield assert_array_equal(re_img.get_affine(), affine)
        del re_img
Пример #6
0
def img_transform(img_file_name,save_dir):

    img_hdr = nitool.load(img_file_name)
    img_data = img_hdr.get_data()
    img_shape = img_data.shape
    
    t = img_data.flatten()
    t1 = np.zeros(t.size)
    t1[np.where(t>100)] = t[np.where(t > 100)]+3000
    t1[np.where(np.logical_and(t >= -1000, t <= -100))]=t[np.where(np.logical_and(t >= -1000,t <= -100))]+1000
    t1[np.where(np.logical_and(t >= -99, t <= 100))]=(t[np.where(np.logical_and(t >= -99, t <= 100))]+99)*11+911
    trans_img = t1.reshape(img_shape)
    
    trans_pair = nitool.Nifti1Pair(trans_img,img_hdr.affine)
    save_name = os.path.join(save_dir, 'itrans'+'.nii.gz')
    nitool.save(trans_pair, save_name)
    
    return save_name
Пример #7
0
def test_save_load():
    shape = (2, 4, 6)
    npt = np.float32
    data = np.arange(np.prod(shape), dtype=npt).reshape(shape)
    affine = np.diag([1, 2, 3, 1])
    affine[:3,3] = [3,2,1]
    img = ni1.Nifti1Image(data, affine)
    img.set_data_dtype(npt)
    with InTemporaryDirectory() as pth:
        nifn = 'an_image.nii'
        sifn = 'another_image.img'
        ni1.save(img, nifn)
        re_img = nils.load(nifn)
        yield assert_true(isinstance(re_img, ni1.Nifti1Image))
        yield assert_array_equal(re_img.get_data(), data)
        yield assert_array_equal(re_img.get_affine(), affine)
        # These and subsequent del statements are to prevent confusing
        # windows errors when trying to open files or delete the
        # temporary directory. 
        del re_img
        if have_scipy: # skip we we cannot read .mat files
            spm2.save(img, sifn)
            re_img2 = nils.load(sifn)
            yield assert_true(isinstance(re_img2, spm2.Spm2AnalyzeImage))
            yield assert_array_equal(re_img2.get_data(), data)
            yield assert_array_equal(re_img2.get_affine(), affine)
            del re_img2
            spm99.save(img, sifn)
            re_img3 = nils.load(sifn)
            yield assert_true(isinstance(re_img3,
                                         spm99.Spm99AnalyzeImage))
            yield assert_array_equal(re_img3.get_data(), data)
            yield assert_array_equal(re_img3.get_affine(), affine)
            ni1.save(re_img3, nifn)
            del re_img3
        re_img = nils.load(nifn)
        yield assert_true(isinstance(re_img, ni1.Nifti1Image))
        yield assert_array_equal(re_img.get_data(), data)
        yield assert_array_equal(re_img.get_affine(), affine)
        del re_img
Пример #8
0
def test_save_load():
    shape = (2, 4, 6)
    npt = np.float32
    data = np.arange(np.prod(shape), dtype=npt).reshape(shape)
    affine = np.diag([1, 2, 3, 1])
    affine[:3, 3] = [3, 2, 1]
    img = ni1.Nifti1Image(data, affine)
    img.set_data_dtype(npt)
    with InTemporaryDirectory() as pth:
        nifn = 'an_image.nii'
        sifn = 'another_image.img'
        ni1.save(img, nifn)
        re_img = nils.load(nifn)
        yield assert_true(isinstance(re_img, ni1.Nifti1Image))
        yield assert_array_equal(re_img.get_data(), data)
        yield assert_array_equal(re_img.get_affine(), affine)
        # These and subsequent del statements are to prevent confusing
        # windows errors when trying to open files or delete the
        # temporary directory.
        del re_img
        if have_scipy:  # skip we we cannot read .mat files
            spm2.save(img, sifn)
            re_img2 = nils.load(sifn)
            yield assert_true(isinstance(re_img2, spm2.Spm2AnalyzeImage))
            yield assert_array_equal(re_img2.get_data(), data)
            yield assert_array_equal(re_img2.get_affine(), affine)
            del re_img2
            spm99.save(img, sifn)
            re_img3 = nils.load(sifn)
            yield assert_true(isinstance(re_img3, spm99.Spm99AnalyzeImage))
            yield assert_array_equal(re_img3.get_data(), data)
            yield assert_array_equal(re_img3.get_affine(), affine)
            ni1.save(re_img3, nifn)
            del re_img3
        re_img = nils.load(nifn)
        yield assert_true(isinstance(re_img, ni1.Nifti1Image))
        yield assert_array_equal(re_img.get_data(), data)
        yield assert_array_equal(re_img.get_affine(), affine)
        del re_img
Пример #9
0
def createSampleVolumeWithSelectedLabels( outputfile, values ):
  '''
  Create a sample volume which has a randomly chosen value from the values list.
  
  Then, save the volume.
  '''

  print Colors.PURPLE + 'Creating a sample volume (d:' + Colors.CYAN + str( SAMPLE_VOLUME_DIMENSION_X ) + ',' + str( SAMPLE_VOLUME_DIMENSION_Y ) + ',' + str( SAMPLE_VOLUME_DIMENSION_Z ) + Colors.PURPLE + ' s:' + Colors.CYAN + str( SAMPLE_VOLUME_SPACING_X ) + ',' + str( SAMPLE_VOLUME_SPACING_Y ) + ',' + str( SAMPLE_VOLUME_SPACING_Z ) + '): ' + Colors.ORANGE + outputfile + Colors.PURPLE + '..' + Colors._CLEAR

  testArr = numpy.zeros( ( SAMPLE_VOLUME_DIMENSION_X, SAMPLE_VOLUME_DIMENSION_Y, SAMPLE_VOLUME_DIMENSION_Z ) )

  for i in range( testArr.shape[0] ):
    for j in range( testArr.shape[1] ):
      for k in range( testArr.shape[2] ):
        testArr[i, j, k] = random.sample( values, 1 )[0]

  img = Nifti1Image( testArr, None )
  hdr = img.get_header()
  hdr.set_zooms( [SAMPLE_VOLUME_SPACING_X, SAMPLE_VOLUME_SPACING_Y, SAMPLE_VOLUME_SPACING_Z] );
  hdr.set_xyzt_units( 1.0, 1.0 )

  save( img, outputfile )

  return testArr
Пример #10
0
# Set directories, specify ROIs and load dictionary for labels
TR = 3
ds_dir = "/home/alex/Datasets/ds001246/"
spm_dir = os.path.join(ds_dir, "derivatives", spm_type)
n_subs = len(glob.glob(ds_dir + os.sep + "sub*"))

##############################################################################

for sub in range(1, n_subs + 1):

    img_output_dir = os.path.join(spm_dir, "sub-" + str(sub).zfill(2))

    # For each run, get averaged condition-specific residuals
    pooled_residuals_array, generic_affine, fourth_dimension_descriptors = \
        pooled_residuals_pipeline(sub, spm_dir, spm_type, ses_type, TR,
                                  drop_first_res)

    # Make subject-specific nifti image of block-averaged residuals
    pooled_residuals = nifti1.Nifti1Image(pooled_residuals_array,
                                          generic_affine)
    nifti_filename = os.path.join(
        img_output_dir,
        "sub-" + str(sub).zfill(2) + "_V_" + stimulus_set + ".nii.gz")
    nifti1.save(pooled_residuals, nifti_filename)
    csv_filename = os.path.join(
        img_output_dir,
        "sub-" + str(sub).zfill(2) + "_uq_conditions_" + stimulus_set + ".csv")
    df = pd.DataFrame({'descriptor': fourth_dimension_descriptors})
    df.to_csv(csv_filename, header=False)
Пример #11
0
 def save_nii(self, person, nii, nii_prefix='mri_smoothed_removed/{}.nii'):
     path = os.path.join(self.file_dir, nii_prefix.format(person.filename))
     nifti1.save(nii, path)
Пример #12
0
data_folder = sys.argv[1]

gm_filename = r'c1reg.nii'
wm_filename = r'c2reg.nii'
csf_filename = r'c3reg.nii'

sublist_filename = sys.argv[2]

with open(sublist_filename, 'rt') as sublistfile:
    lines = sublistfile.readlines()
sublist = [k.rstrip() for k in lines]

#%%

for i in sublist:
    print(i)
    gm_file = nitool.load(os.path.join(data_folder, i, gm_filename))
    gm_img = gm_file.get_data()

    wm_file = nitool.load(os.path.join(data_folder, i, wm_filename))
    wm_img = wm_file.get_data()

    csf_file = nitool.load(os.path.join(data_folder, i, csf_filename))
    csf_img = csf_file.get_data()

    tiv_img = gm_img + wm_img + csf_img
    tiv_file = nitool.Nifti1Image(tiv_img, gm_file.affine)
    tiv_filename = os.path.join(data_folder, i, 'tivmask_image.nii.gz')
    print(tiv_filename)
    nitool.save(tiv_file, tiv_filename)
Пример #13
0
    es_array = np.asarray(es.dataobj)
    p = nib.load(p_path)
    p_array = np.asarray(p.dataobj)

    for p in ps:
        corrected_array = voxelwise_correction(es_array,
                                               p_array,
                                               voxel_count,
                                               thres=p)
        affine = es.affine
        header = es.header
        corrected_niis = nib.Nifti1Image(corrected_array, affine, header)
        new_f = os.path.join(voxel_path, 'es_bon_{}.nii'.format(str(p)[2:]))
        print(new_f)
        print(len(corrected_array[corrected_array != 0]))
        nifti1.save(corrected_niis, new_f)

# %%
# ROI GMV correction
import numpy as np
from meta_analysis import utils


def load_nii_array(filepath):
    nii = nib.load(filepath)
    return np.asarray(nii.dataobj), nii


def roi_correction(value_path, p_path, count, out_path, p=0.001, top=1):
    v_array, v_nii = load_nii_array(value_path)
    p_array, _ = load_nii_array(p_path)
Пример #14
0
import os
import sys

#%%

data_folder = sys.argv[1]

gm_filename = r'c1reg.nii'
wm_filename = r'c2reg.nii'

sublist_filename = sys.argv[2]
with open(sublist_filename, 'rt') as sublistfile:
    lines = sublistfile.readlines()
sublist = [k.rstrip() for k in lines]

#%%

for i in sublist:
    print(i)
    gm_file = nitool.load(os.path.join(data_folder, i, gm_filename))
    gm_img = gm_file.get_data()

    wm_file = nitool.load(os.path.join(data_folder, i, wm_filename))
    wm_img = wm_file.get_data()

    tbv_img = gm_img + wm_img
    tbv_file = nitool.Nifti1Image(tbv_img, gm_file.affine)
    tbv_filename = os.path.join(data_folder, i, 'tbvmask_image.nii.gz')
    print(tbv_filename)
    nitool.save(tbv_file, tbv_filename)