Пример #1
0
def nii_save(volume,path,filename):
    output = nib.Nifti1Image(volume,np.eye(4))
    nib.save(output,os.path.join(path,filename))
Пример #2
0
    def _run_interface(self, runtime):
        from scipy import ndimage as sim

        fmap_nii = nb.load(self.inputs.in_file)
        data = np.squeeze(fmap_nii.get_fdata(dtype='float32'))

        # Despike / denoise (no-mask)
        if self.inputs.despike:
            data = _despike2d(data, self.inputs.despike_threshold)

        mask = None
        if isdefined(self.inputs.in_mask):
            masknii = nb.load(self.inputs.in_mask)
            mask = np.asanyarray(masknii.dataobj).astype('uint8')

            # Dilate mask
            if self.inputs.mask_erode > 0:
                struc = sim.iterate_structure(sim.generate_binary_structure(3, 2), 1)
                mask = sim.binary_erosion(
                    mask, struc,
                    iterations=self.inputs.mask_erode
                ).astype(np.uint8)  # pylint: disable=no-member

        self._results['out_file'] = fname_presuffix(
            self.inputs.in_file, suffix='_enh', newpath=runtime.cwd)
        datanii = nb.Nifti1Image(data, fmap_nii.affine, fmap_nii.header)

        if self.inputs.unwrap:
            data = _unwrap(data, self.inputs.in_magnitude, mask)
            self._results['out_unwrapped'] = fname_presuffix(
                self.inputs.in_file, suffix='_unwrap', newpath=runtime.cwd)
            nb.Nifti1Image(data, fmap_nii.affine, fmap_nii.header).to_filename(
                self._results['out_unwrapped'])

        if not self.inputs.bspline_smooth:
            datanii.to_filename(self._results['out_file'])
            return runtime
        else:
            from ..utils import bspline as fbsp
            from statsmodels.robust.scale import mad

            # Fit BSplines (coarse)
            bspobj = fbsp.BSplineFieldmap(datanii, weights=mask,
                                          njobs=self.inputs.num_threads)
            bspobj.fit()
            smoothed1 = bspobj.get_smoothed()

            # Manipulate the difference map
            diffmap = data - smoothed1.get_fdata(dtype='float32')
            sderror = mad(diffmap[mask > 0])
            LOGGER.info('SD of error after B-Spline fitting is %f', sderror)
            errormask = np.zeros_like(diffmap)
            errormask[np.abs(diffmap) > (10 * sderror)] = 1
            errormask *= mask

            nslices = 0
            try:
                errorslice = np.squeeze(np.argwhere(errormask.sum(0).sum(0) > 0))
                nslices = errorslice[-1] - errorslice[0]
            except IndexError:  # mask is empty, do not refine
                pass

            if nslices > 1:
                diffmapmsk = mask[..., errorslice[0]:errorslice[-1]]
                diffmapnii = nb.Nifti1Image(
                    diffmap[..., errorslice[0]:errorslice[-1]] * diffmapmsk,
                    datanii.affine, datanii.header)

                bspobj2 = fbsp.BSplineFieldmap(diffmapnii, knots_zooms=[24., 24., 4.],
                                               njobs=self.inputs.num_threads)
                bspobj2.fit()
                smoothed2 = bspobj2.get_smoothed().get_fdata(dtype='float32')

                final = smoothed1.get_fdata(dtype='float32').copy()
                final[..., errorslice[0]:errorslice[-1]] += smoothed2
            else:
                final = smoothed1.get_fdata(dtype='float32')

            nb.Nifti1Image(final, datanii.affine, datanii.header).to_filename(
                self._results['out_file'])

        return runtime
Пример #3
0
def plot_brainrsa_montage(img,
                          threshold=None,
                          slice=[6, 6, 6],
                          background=get_bg_ch2bet()):
    """
    Plot the RSA-result by different cuts

    Parameters
    ----------
    img : string
        The file path of the .nii file of the RSA results.
    threshold : None or int. Default is None.
        The threshold of the number of voxels used in correction.
        If threshold=n, only the similarity clusters consisting more than threshold voxels will be visible. If it is
        None, the threshold-correction will not work.
    slice : array
        The point where the cut is performed.
        If slice=[slice_x, slice_y, slice_z], slice_x, slice_y, slice_z represent the coordinates of each cut in the x,
        y, z direction. If slice=[[slice_x1, slice_x2], [slice_y1, slice_y2], [slice_z1, slice_z2]], slice_x1 & slice_x2
        represent the coordinates of each cut in the x direction, slice_y1 & slice_y2 represent the coordinates of each
        cut in the y direction, slice_z1 & slice_z2 represent the coordinates of each cut in the z direction.
    background : Niimg-like object or string. Default is stuff.get_bg_ch2bet()
        The background image that the RSA results will be plotted on top of.
    """

    imgarray = nib.load(img).get_data()

    if (imgarray == np.nan).all() == True:

        print("No Valid Results")

    else:

        if threshold != None:
            imgarray = nib.load(img).get_data()
            affine = get_affine(img)
            imgarray = correct_by_threshold(imgarray, threshold)
            img = nib.Nifti1Image(imgarray, affine)

        slice_x = slice[0]
        slice_y = slice[1]
        slice_z = slice[2]

        if slice_x != 0:
            plotting.plot_stat_map(stat_map_img=img,
                                   bg_img=background,
                                   display_mode='x',
                                   cut_coords=slice_x,
                                   title="Similarity -sagittal",
                                   draw_cross=True,
                                   vmax=1)

        if slice_y != 0:
            plotting.plot_stat_map(stat_map_img=img,
                                   bg_img=background,
                                   display_mode='y',
                                   cut_coords=slice_y,
                                   title="Similarity -coronal",
                                   draw_cross=True,
                                   vmax=1)

        if slice_z != 0:
            plotting.plot_stat_map(stat_map_img=img,
                                   bg_img=background,
                                   display_mode='z',
                                   cut_coords=slice_z,
                                   title="Similarity -axial",
                                   draw_cross=True,
                                   vmax=1)

        plt.show()
  objmask  = np.zeros( numpypredict.shape, dtype='uint8' )
  scoreimg = np.zeros( numpypredict.shape, dtype='float16' )
  # In[ ]:
  # FIXME - vectorize this
  for iii in range(nslice):
    print(iii,)
    myimage = numpypredict[:,:,iii]
    results = model.detect([myimage[:,:,np.newaxis] ], verbose=1)
    myoutput = results[0]
    for jjj,idclass in enumerate(myoutput['class_ids']):
        scoreimg[myoutput['rois'][jjj][0]:myoutput['rois'][jjj][2], myoutput['rois'][jjj][1]:myoutput['rois'][jjj][3], iii ] = myoutput['scores'][jjj]
        objmask[myoutput['rois'][jjj][0]:myoutput['rois'][jjj][2], myoutput['rois'][jjj][1]:myoutput['rois'][jjj][3], iii ] = 1
        objmask[:,:,iii] = objmask[:,:,iii] + idclass*myoutput['masks'][:,:,jjj].astype('uint8')

  # write out
  segout_img = nib.Nifti1Image(objmask , None, header=imageheader)
  segout_img.to_filename( options.segmentation )
  scrout_img = nib.Nifti1Image(scoreimg, None, header=imageheader)
  scrout_img.to_filename( '/'.join(options.segmentation.split('/')[:-1]) + '/objscore.nii.gz' )

##########################
# print help
##########################
else:
  import keras; import tensorflow as tf
  print("keras version: ",keras.__version__, 'TF version:',tf.__version__)
  print("debug: /opt/apps/miniconda/maskrcnn/lib/python3.6/site-packages/keras/engine/training.py(1450)train_on_batch()->[566.86456, 114.579956, 168.20625, 284.07834, 0.0, 0.0]")
  print("debug: /opt/apps/miniconda/maskrcnn/lib/python3.6/site-packages/keras/engine/training_generator.py(174)fit_generator()")
  dataset_test = LoadDataset()
  parser.print_help()
Пример #5
0
 def colorize(self, col_out_dir, final_out_dir):
     """
     Transforms the individual channels from Pipeline.color_split using the 
     affine/nonlinear transformation parameters from Pipeline.slice_by_slice_alignment() 
     and the nonlinear volumetric transformation parameters from Pipeline.blockface_to_MRI_alignment()
     Because each transformation is independent of the others, the script will utilize all
     threads provided by the user to transform multiple slices simultaneously.
     See Transform_Wrapper for more information and the transformation code.
     """
     #Feed transformation information to sub-processes through Transform_Wrapper
     out_suf_list = ['Blue', 'Green', 'Red']
     skip_flag = False
     for i, col_vol in enumerate([
             self.hist_NIFTI.Blue_vol, self.hist_NIFTI.Green_vol,
             self.hist_NIFTI.Red_vol
     ]):
         for j in range(len(self.hist_NIFTI.slices)):
             if not os.path.isfile(self.orig_slice_by_slice_loc +
                                   '/color/' + out_suf_list[i] + '/' +
                                   col_vol.slices[j].name):
                 break
         else:
             continue
         break
     else:
         print(
             ' - All Color Channel Split Transformed Files Exist. Utilizing currently existing data.'
         )
         skip_flag = True
     if skip_flag == False:
         print(
             '====================================ATTEMPTING TO MULTITHREAD===================================='
         )
         pool = Pool(processes=self.threads)
         self.hist_NIFTI.Blue_vol.col = 'Blue'
         self.hist_NIFTI.Green_vol.col = 'Green'
         self.hist_NIFTI.Red_vol.col = 'Red'
         for col_vol in enumerate([
                 self.hist_NIFTI.Blue_vol, self.hist_NIFTI.Green_vol,
                 self.hist_NIFTI.Red_vol
         ]):
             pool.map(
                 Transform_Wrapper(
                     col_vol, self.hist_transform, self.BF_NIFTI,
                     self.orig_slice_by_slice_loc + '/color/'),
                 list(range(len(self.hist_transform.slices))))
             pool.close()
             pool.join()
     #Load output color channel split Stacks and convert to volume/
     tmp = self.BF_NIFTI
     r = Stacks.NIFTI_Stack(self.orig_slice_by_slice_loc + '/color/Red/')
     r.affine_3D = tmp.affine_3D
     r.volumize(self.orig_slice_by_slice_loc +
                '/color/volumes/r_vol.nii.gz')
     g = Stacks.NIFTI_Stack(self.orig_slice_by_slice_loc + '/color/Green/')
     g.affine_3D = tmp.affine_3Dblockface_to_MRI_alignment.nii.gz
     g.volumize(self.orig_slice_by_slice_loc +
                '/color/volumes/g_vol.nii.gz')
     b = Stacks.NIFTI_Stack(self.orig_slice_by_slice_loc + '/color/Blue/')
     b.affine_3D = tmp.affine_3D
     b.volumize(self.orig_slice_by_slice_loc +
                '/color/volumes/b_vol.nii.gz')
     #Transform color-split volumes to the MRI space
     self.final_apply_transform(
         self.orig_slice_by_slice_loc + '/color/volumes/b_vol.nii.gz',
         self.orig_slice_by_slice_loc + '/color/volumes/final_b_vol.nii.gz')
     self.final_apply_transform(
         self.orig_slice_by_slice_loc + '/color/volumes/g_vol.nii.gz',
         self.orig_slice_by_slice_loc + '/color/volumes/final_g_vol.nii.gz')
     self.final_apply_transform(
         self.orig_slice_by_slice_loc + '/color/volumes/r_vol.nii.gz',
         self.orig_slice_by_slice_loc + '/color/volumes/final_r_vol.nii.gz')
     #Load transformed and color-split volumes. Merge the channels to create and RGB volume.
     print('Loading RGB')
     r_data = nib.load(self.orig_slice_by_slice_loc +
                       '/color/volumes/final_r_vol.nii.gz').get_data()
     g_data = nib.load(self.orig_slice_by_slice_loc +
                       '/color/volumes/final_g_vol.nii.gz').get_data()
     b_data = nib.load(self.orig_slice_by_slice_loc +
                       '/color/volumes/final_b_vol.nii.gz').get_data()
     print('Merging Channels')
     rgb = np.empty((r_data.shape[0], r_data.shape[1], r_data.shape[2], 3))
     rgb[:, :, :, 0] = b_data
     rgb[:, :, :, 1] = g_data
     rgb[:, :, :, 2] = r_data
     rgb = rgb.astype('u1')
     #Save the RGB Volume
     print('Saving Volume')
     shape_3d = rgb.shape[0:3]
     rgb_dtype = np.dtype([('R', 'u1'), ('G', 'u1'), ('B', 'u1')])
     rgb_typed = rgb.view(rgb_dtype).reshape(shape_3d)
     tmp = nib.load(self.MRI)
     volume = nib.Nifti1Image(rgb_typed, affine=tmp.affine)
     nib.save(volume, final_out_dir + '/RGB_aligned_histology_vol.nii.gz')
Пример #6
0
    def calc_pve(self):
        if self.bt_ok.text() == ("Operate" or "计算"):
            try:
                if self.lan == 0:
                    self.bt_ok.setText("Cancel")
                elif self.lan == 1:
                    self.bt_ok.setText("取消")
                if self.index_method == 0:
                    for idx in range(len(self.path_cbf)):
                        nii_cbf = ni.load(self.path_cbf[idx])
                        nii_gm = ni.load(self.path_gm[idx])
                        nii_wm = ni.load(self.path_wm[idx])
                        if nii_cbf.shape != nii_gm.shape:
                            if self.bul_autoreg == 1:
                                # 预留将结构像与CBF自动配准的功能,用resample代替
                                nii_cbf = resample_to_img(nii_cbf, nii_gm)
                            else:
                                if self.lan == 0:
                                    warn_msg(self, "Shape of CBF and T1 are different.")
                                elif self.lan == 1:
                                    warn_msg(self, "CBF与结构像大小不一致")
                                continue
                        data_cbf = nii_cbf.get_fdata()
                        data_gm = nii_gm.get_fdata()
                        data_wm = nii_wm.get_fdata()

                        data_temp =  (data_cbf * ((data_gm + data_wm) > 0.1)) / (((data_gm) + 0.4 * (data_wm)) * ((data_gm + 0.4 * data_wm) > 0.1))

                        data_temp[np.isnan(data_temp)] = 0
                        data_temp[np.isinf(data_temp)] = 0
                        self.data_temp.append(ni.Nifti1Image(data_temp, nii_gm.affine, nii_gm.header))

                    self.temp.set_nii(self.data_temp)
                    if self.lan == 0:
                        self.bt_ok.setText("Operate")
                    elif self.lan == 1:
                        self.bt_ok.setText("计算")
                    self.temp.fname = [item.replace(".nii", "_pve.nii") for item in self.path_cbf]
                    if self.checkbox_autosave == 1:
                        ni.save(ni.Nifti1Image(data_temp, nii_gm.affine, nii_gm.header), item.replace(".nii", "_pve.nii"))

                    self.close()
                elif self.index_method == 1:
                    data_temp = 0
                    self.lr_thread = LRThread(self, self.lan)
                    self.lr_thread.start()
                    self.lr_thread.progress.connect(self.update_progress)
                    self.lr_thread.trigger.connect(self.get_data_thread)
                    self.lr_thread.file.connect(self.get_data_each)
                else:
                    pass # 预留其他方法

            except FileNotFoundError:
                if self.lan == 0:
                    warn_msg(self, "File not existed.")
                elif self.lan == 1:
                    warn_msg(self, "选择的文件不存在")
            except ni.filebasedimages.ImageFileError:
                if self.lan == 0:
                    warn_msg(self, "Selected file is not an nii file.")
                elif self.lan == 1:
                    warn_msg(self, "选择的文件格式错误")
        elif self.bt_ok.text() == ("Cancel" or "取消"):
            self.lr_thread.stop()
            self.lr_thread.quit()
            self.lr_thread.wait()
            del self.lr_thread
            if self.lan == 0:
                self.bt_ok.setText("Operate")
            elif self.lan == 1:
                self.bt_ok.setText("计算")
Пример #7
0
def test(model, limit, save, bbox):
    """Test the model.
    model: the model to test.
    limit: the images to be used.
    save: whether to save the masks.
    limit: whether to draw the bboxes.
    """
    per_class_ious = []
    info = json.load(open(args.data + "dataset.json"))
    info = list(info['train_and_test'])
    detect_time = 0
    for path in info[:limit]:
        path_image = path['image']
        path_label = path['label']
        image = nib.load(path_image).get_data().copy()
        label = nib.load(path_label)  # load the gt-masks
        affine = label.affine  # prepared to save the predicted mask later
        label = label.get_data().copy()
        image = np.expand_dims(image, -1)
        start_time = time.time()
        result = model.detect([image])[0]
        detect_time += time.time() - start_time
        print("detect_time:", time.time() - start_time)
        """The shape of result: a dict containing
        {
            "rois": final_rois,           [N, (y1, x1, z1, y2, x2, z2)] in real coordinates
            "class_ids": final_class_ids, [N]
            "scores": final_scores,       [N]
            "mask": final_mask,           [mask_shape[0], mask_shape[1], mask_shape[2]]
        }"""
        rois = result["rois"]
        class_ids = result["class_ids"]
        scores = result["scores"]
        mask = result["mask"]
        # Prepare the gt-masks and pred-masks to calculate the ious.
        gt_masks = np.zeros((image.shape[0], image.shape[1], image.shape[2],
                             model.config.NUM_CLASSES - 1))
        pred_masks = np.zeros((image.shape[0], image.shape[1], image.shape[2],
                               model.config.NUM_CLASSES - 1))
        # Generate the per instance gt masks.
        for j in range(model.config.NUM_CLASSES - 1):
            gt_masks[:, :, :, j][label == j + 1] = 1
        # Generate the per instance predicted masks.
        for j in range(model.config.NUM_CLASSES - 1):
            pred_masks[:, :, :, j][mask == j + 1] = 1
        # calculate different kind of ious
        per_class_iou = utils.compute_per_class_mask_iou(gt_masks, pred_masks)
        per_class_ious.append(per_class_iou)
        # Save the results
        if save == "true":
            # Draw bboxes
            if bbox == "true":
                y1, x1, z1, y2, x2, z2 = rois[0, :]
                mask[y1, x1:x2, z1] = 10
                mask[y1, x1:x2, z2] = 10
                mask[y2, x1:x2, z1] = 10
                mask[y2, x1:x2, z2] = 10
                mask[y1:y2, x1, z1] = 10
                mask[y1:y2, x2, z1] = 10
                mask[y1:y2, x1, z2] = 10
                mask[y1:y2, x2, z2] = 10
                mask[y1, x1, z1:z2] = 10
                mask[y1, x2, z1:z2] = 10
                mask[y2, x1, z1:z2] = 10
                mask[y2, x2, z1:z2] = 10
            vol = nib.Nifti1Image(mask.astype(np.int32), affine)
            if not os.path.exists("./results"):
                os.makedirs("./results")
            nib.save(
                vol, "./results/" + str(per_class_iou.mean()) + "_" +
                path_image[-17:])
        print(path_image[-17:] + " detected done. iou = " + str(per_class_iou))
    print("Test completed.")
    # Print the iou results.
    per_class_ious = np.array(per_class_ious)
    print("per class iou mean:", np.mean(per_class_ious, axis=0))
    print("std:", np.std(per_class_ious, axis=0))
    print("Total ious mean:", per_class_ious.mean())
    print("Total detect time:", detect_time)
Пример #8
0
])
#raw_img = '/gsfs0/data/poskanzc/Sherlock/preproc/fmriprep/sub-01/func/sub-01_task-sherlockPart1_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz'
mask = '/gsfs0/data/poskanzc/Sherlock/preproc/fmriprep/gm_bin_mask.nii.gz'

#raw = nib.load(raw_img)
#raw_hdr = raw.header
mfn = nib.load(mask)
#masker = NiftiMasker()
#masker.fit(mfn)

for sub in subjects:
    masker = NiftiMasker()
    masker.fit(mfn)
    run1 = np.load(data_dir + sub + '/' + sub + '_compcorr/' + sub +
                   '_GM_run_1_compcorr_TRedit.npy')
    raw_img = '/gsfs0/data/poskanzc/Sherlock/preproc/fmriprep/' + sub + '/func/' + sub + '_task-sherlockPart1_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz'
    raw = nib.load(raw_img)
    #raw_hdr = raw.header

    localizer_data = run1[0:204, :]
    nifti = masker.inverse_transform(localizer_data)
    nifti_data = nifti.get_data()
    nifti_array = np.array(nifti_data)
    final_img = nib.Nifti1Image(nifti_array, mfn.affine, raw.header)
    #print(nifti.header.get_zooms())
    #nib.Nifti1Header.from_header(header = hdr, check = True)
    #final_img = nib.Nifti1Image(nifti,affine)
    nib.save(
        final_img, data_dir + sub + '/' + sub + '_compcorr/' + sub +
        '_GM_run_1_compcorr_localizer.nii.gz')
Пример #9
0
    def __getitem__(self, index):
        item = self.data_list[index]
        input_data = self.data_file.root.data[
            item]  # data shape:(4, 128, 128, 128)
        label_data = self.data_file.root.truth[
            item]  # truth shape:(1, 128, 128, 128)
        seg_label = get_target_label(label_data, self.config)
        affine = self.data_file.root.affine[item]
        # dimessions of data
        n_dim = len(seg_label[0].shape)

        if self.phase == "train":
            if self.config["random_offset"] is not None:
                offset_factor = -0.25 + np.random.random(n_dim)
            else:
                offset_factor = None
            if self.config["random_flip"] is not None:
                flip_axis = random_flip_dimensions(n_dim)
            else:
                flip_axis = None
            # Apply random offset and flip to each channel according to randomly generated offset factor and flip axis respectively.
            data_list = list()
            for data_channel in range(input_data.shape[0]):
                # Transform ndarray data to Nifti1Image
                channel_image = nib.Nifti1Image(
                    dataobj=input_data[data_channel], affine=affine)
                data_list.append(
                    resample_to_img(augment_image(channel_image,
                                                  flip_axis=flip_axis,
                                                  offset_factor=offset_factor),
                                    channel_image,
                                    interpolation="continuous").get_data())
            input_data = np.asarray(data_list)
            # Transform ndarray segmentation label to Nifti1Image
            seg_image = nib.Nifti1Image(dataobj=seg_label[0], affine=affine)
            seg_label = resample_to_img(augment_image(
                seg_image, flip_axis=flip_axis, offset_factor=offset_factor),
                                        seg_image,
                                        interpolation="nearest").get_data()
            seg_label = seg_label[np.newaxis]
        elif self.phase == "validate":
            data_list = list()
            offset_factor = None
            flip_axis = None
            for data_channel in range(input_data.shape[0]):
                # Transform ndarray data to Nifti1Image
                channel_image = nib.Nifti1Image(
                    dataobj=input_data[data_channel], affine=affine)
                data_list.append(
                    resample_to_img(augment_image(channel_image,
                                                  flip_axis=flip_axis,
                                                  offset_factor=offset_factor),
                                    channel_image,
                                    interpolation="continuous").get_data())
            input_data = np.asarray(data_list)
            # Transform ndarray segmentation label to Nifti1Image
            seg_image = nib.Nifti1Image(dataobj=seg_label[0], affine=affine)
            seg_label = resample_to_img(augment_image(
                seg_image, flip_axis=flip_axis, offset_factor=offset_factor),
                                        seg_image,
                                        interpolation="nearest").get_data()
            if len(seg_label.shape) == 3:
                seg_label = seg_label[np.newaxis]
        elif self.phase == "test":
            pass
        if self.config["VAE_enable"]:
            # Concatenate to (5, 128, 128, 128) as network output
            final_label = np.concatenate((seg_label, input_data), axis=0)
        else:
            final_label = seg_label

        return input_data, final_label
Пример #10
0
def create_cfm(in_file, lesion_mask=None, global_mask=True, out_path=None):
    """
    Create a mask to constrain registration.

    Parameters
    ----------
    in_file : str
        Path to an existing image (usually a mask).
        If global_mask = True, this is used as a size/dimension reference.
    out_path : str
        Path/filename for the new cost function mask.
    lesion_mask : str, optional
        Path to an existing binary lesion mask.
    global_mask : bool
        Create a whole-image mask (True) or limit to reference mask (False)
        A whole image-mask is 1 everywhere

    Returns
    -------
    str
        Absolute path of the new cost function mask.

    Notes
    -----
    in_file and lesion_mask must be in the same
    image space and have the same dimensions
    """
    import os
    import numpy as np
    import nibabel as nb
    from nipype.utils.filemanip import fname_presuffix

    if out_path is None:
        out_path = fname_presuffix(in_file, suffix='_cfm', newpath=os.getcwd())
    else:
        out_path = os.path.abspath(out_path)

    if not global_mask and not lesion_mask:
        NIWORKFLOWS_LOG.warning(
            'No lesion mask was provided and global_mask not requested, '
            'therefore the original mask will not be modified.')

    # Load the input image
    in_img = nb.load(in_file)

    # If we want a global mask, create one based on the input image.
    data = np.ones(in_img.shape,
                   dtype=np.uint8) if global_mask else in_img.get_data()
    if set(np.unique(data)) - {0, 1}:
        raise ValueError(
            "`global_mask` must be true if `in_file` is not a binary mask")

    # If a lesion mask was provided, combine it with the secondary mask.
    if lesion_mask is not None:
        # Reorient the lesion mask and get the data.
        lm_img = nb.as_closest_canonical(nb.load(lesion_mask))

        # Subtract lesion mask from secondary mask, set negatives to 0
        data = np.fmax(data - lm_img.get_data(), 0)
        # Cost function mask will be created from subtraction
    # Otherwise, CFM will be created from global mask

    cfm_img = nb.Nifti1Image(data, in_img.affine, in_img.header)

    # Save the cost function mask.
    cfm_img.set_data_dtype(np.uint8)
    cfm_img.to_filename(out_path)

    return out_path
mri_data = {}

for runii, fname in enumerate(nifti_files):
    for ROI in rois:
        # Get all cortex data and task orders
        lh_mask = np.array(nib.load(
            os.path.join(ROI_dir, 'lh.%s_vol_dil.nii.gz' % ROI)).get_data(),
                           dtype=bool)
        rh_mask = np.array(nib.load(
            os.path.join(ROI_dir, 'rh.%s_vol_dil.nii.gz' % ROI)).get_data(),
                           dtype=bool)

        # mri_data[ROI] = np.array([np.vstack([nib.load(nf).get_data()[lh_mask,:], nib.load(nf).get_data()[rh_mask,:]]) for nf in nifti_files])

        old_img = nib.load(nifti_files[runii])
        new_img = nib.Nifti1Image(old_img.get_data()[lh_mask + rh_mask, :],
                                  old_img.affine)
        new_img.to_filename(
            os.path.join(deriv_dir, '%s-%s-%i.nii.gz' % (subid, ROI, runii)))

    # Load trial data
    task_data = {'trial_order': [], 'trial_stimuli': [], 'trial_params': []}

    # for ti,par in zip(trialinfo_files, params_files):
    [
        trial_array, trial_indices, trial_params, per_trial_parameters,
        per_trial_phase_durations, staircase
    ] = pickle.load(open(trialinfo_files[runii], 'rb'))

    trial_times = np.vstack(per_trial_phase_durations)[:, 0] + np.arange(
        len(per_trial_phase_durations)) * TR
Пример #12
0
        os.path.join(path_to_images, "OAS1_*_MR1/mwc1OAS1_*dim.nii")))
images = images[:39]

### Mask data
print "Nifti masker"
nifti_masker = NiftiMasker(
    smoothing_fwhm=FWHM,
    memory='nilearn_cache',
    memory_level=1)  # cache options
# remove NaNs from images
ref_affine = np.asarray(nibabel.load(images[0]).get_affine())
images_ = [np.asarray(nibabel.load(img).get_data()) for img in images]
nonnan_images = []
for img in images_:
    img[np.isnan(img)] = 0.
    nonnan_images.append(nibabel.Nifti1Image(img, ref_affine))
# remove features with zero between-subject variance
images_masked = nifti_masker.fit_transform(images)
images_masked[:, images_masked.var(0) < 0.01] = 0.
# final masking
new_images = nifti_masker.inverse_transform(images_masked)
images_masked = nifti_masker.fit_transform(new_images)
n_samples, n_features = images_masked.shape
print n_samples, "subjects, ", n_features, "features"

### Euclidean distance between subjects
print "Compute Euclidean distances"
>>>>>>> 7127fbafc1c48de982482a106d48dcc6ac422172
dist = euclidean_distances(images_masked)
mahalanobis_dist = np.mean(dist, 0) - np.median(dist)
threshold = stats.chi2(n_samples).isf(0.1 / float(n_samples))
Пример #13
0
    save_c = click.confirm('\nSave masks? ', default=True)
    print('Finding MUs:')
    for x in progressbar.progressbar(range(1, n_points)):
        dims = objs[x]
        roi = regs == x
        roi_sig = np.nansum(np.ma.masked_array(stir_slice, ~roi), axis=(0, 1))
        c = np.corrcoef(global_sig, roi_sig)[1, 0]
        corr_sig.append(c)
        map_2d = (np.sum(roi, axis=2) > 0) * x
        mu_map += map_2d
        if save_c:
            volumes.append(np.sum(np.sum(np.sum(roi, axis=0), axis=0), axis=0))
            spat_size.append(
                np.sqrt((dims[1].stop - dims[1].start) ^ 2 +
                        (dims[0].stop - dims[0].start) ^ 2))
            mask = nib.Nifti1Image(roi.astype(int), n1_img.affine)
            direc = "/".join(filename.split('/')[:-1])
            direc += '/mask_{}.nii'.format(x)
            nib.save(mask, direc)
    masked = np.ma.masked_where(mu_map == 0, mu_map)
    plt.imshow(stir_slice[:, :, 1].T, origin="upper", cmap="gray")
    plt.imshow(masked.T, cmap="jet", origin="upper", alpha=0.9)
    plt.suptitle('MU maps')
    plt.show()
    repeat = click.confirm('\nRedo analysis?', default=False)

sorted_indices = np.argsort(corr_sig)[::-1]


def save_to_video(filename):
    """If we want to export the variances as a video, this is how we save it out."""
Пример #14
0
		if bvals[index] < 100:
			attenuatedBrainData = segmentedBrainData
		else:
			#Convert bvecs to angles
			x = bvecRotated[0]
			y = bvecRotated[1]
			z = bvecRotated[2]
			r, theta, phi = shm.cart2sphere(x, y, z)

			#Make design matrix
			B, m, n = shm.real_sym_sh_basis(order, theta, phi)
			
			#Get attenuated data
			print('Attenuating volume ' + str(index))
			if bvals[index] < 1500:
				attenuatedBrainData = pl.attenuateImageSphericalHarmonics (segmentedBrainData, B, coefficientsb1000, bvals[index], 1000)
			elif  bvals[index] > 1500 and bvals[index] < 2500:
				attenuatedBrainData = pl.attenuateImageSphericalHarmonics (segmentedBrainData, B, coefficientsb2000, bvals[index], 2000)		


		attenuatedBrainNii = nib.Nifti1Image(attenuatedBrainData, segmentedBrain.get_affine(),segmentedBrain.get_header())

		attenuatedBrainNii.to_filename(os.path.join(codeDir,'attenuatedBrainPy.nii.gz'))

		shutil.move(codeDir + "/attenuatedBrainPy.nii.gz", outputDir+ "/brain"+str(index)+".nii.gz")

		#Register to reference brain to get sizes right
		print('Registering volume ' + str(index))
		call(["flirt","-in",outputDir+ "/brain"+str(index)+".nii.gz","-ref",outputDir+ "/brainref.nii.gz","-applyxfm","-out",outputDir+ "/brain"+str(index)+".nii.gz"])

Пример #15
0
def nifti_image_files(outdir, filelist, shape):
    for f in ensure_list(filelist):
        img = np.random.random(shape)
        nb.Nifti1Image(img, np.eye(4),
                       None).to_filename(os.path.join(outdir, f))
        if os.path.exists(clone_path): shutil.rmtree(clone_path)
        os.makedirs(clone_path)
        # create each clone channel
        for j in range(len(channels)):
            channel_img = nib.load(channels[j])
            channel_data = channel_img.get_data().copy()
            # get data withing roi (label)
            roi_data = channel_data[np.nonzero(label_data)]
            # new data follows gaussian distribution
            mean_value, std_value = [np.mean(roi_data), np.std(roi_data)]
            channel_data[np.nonzero(label_data)] = np.array([
                random.gauss(mean_value, std_value)
                for _ in range(roi_data.shape[0])
            ])
            # create modified channel for clone
            modified_channel = nib.Nifti1Image(channel_data,
                                               channel_img.affine)
            #TODO: Normalize image?
            # save clone channel
            channel_name = os.path.basename(channels[j])
            nib.save(
                modified_channel,
                os.path.join(clone_path,
                             'clone_V2_' + str(i) + '.' + channel_name))

        # save unaltered label for clone
        label_name = os.path.basename(label[0])
        nib.save(
            label_img,
            os.path.join(clone_path, 'clone_V2_' + str(i) + '.' + label_name))
        #save unaltered mask for clone
        mask_img = nib.load(mask[0])
    # make new_brainsuite_head_label_volume
    # new_brainsuite_head_label_volume = np.zeros(brainsuite_head_label_volume.shape)
    # for label_index in label_index_brainsuite_head:
    #     mylabel_value = find_subdict_index(inputdict_brainsuite, label_index, mylabel_value=3)
    #     boolwhich1 = brainsuite_head_label_volume == label_index
    #     new_brainsuite_head_label_volume[boolwhich1] = mylabel_value
    new_brainsuite_head_label_volume = label_index_replace(
        brainsuite_head_label_volume, inputdict_brainsuite, mylabel_value=3)
    # combine freesurfer label and brainsuite label
    boolwhich2 = new_freesurfer_label_volume > 0
    # brainsuite_label_volume_flip[boolwhich2] = 0  # test for joint label !!
    # brainsuite_head_label_volume_flip[boolwhich2] = 0
    # label_joint = brainsuite_head_label_volume_flip + new_freesurfer_label_volume
    new_brainsuite_head_label_volume[boolwhich2] = 0
    label_joint = new_brainsuite_head_label_volume + new_freesurfer_label_volume
    # combine joint label with Lesions
    for l in lesion_label_path:
        lesion_label = nib.load(l)
        lesion_label = lesion_label.get_fdata()
        lesion_type = sample_info.loc[sample_info['INDI Subject ID'] ==
                                      int(subjectID[1:]), ['Stroke type']]
        label_index = 14 if lesion_type.values == 'Embolic' else 15
        boolwhich3 = lesion_label > 0
        label_joint[boolwhich3] = label_index

    img = nib.Nifti1Image(label_joint, raw_affine)
    img.header.get_xyzt_units()
    nib.save(
        img,
        output_path + os.path.basename(one_sample).split('.')[0] + sample_ext)
Пример #18
0
vmax = image.max()

source_affine = np.eye(4)
# Use canonical vectors for affine
# Give the affine an offset
source_affine[:2, 3] = np.array([96, 64])

# Rotate it slightly
angle = np.pi / 180 * 15
rotation_matrix = np.array([[np.cos(angle), -np.sin(angle)],
                            [np.sin(angle), np.cos(angle)]])
source_affine[:2, :2] = rotation_matrix * 2.0  # 2.0mm voxel size

# We need to turn this data into a nibabel image
import nibabel
img = nibabel.Nifti1Image(image[:, :, np.newaxis], affine=source_affine)

#############################################################################
# Now resample the image
from nilearn.image import resample_img
img_in_mm_space = resample_img(img,
                               target_affine=np.eye(4),
                               target_shape=(512, 512, 1))

target_affine_3x3 = np.eye(3) * 2
target_affine_4x4 = np.eye(4) * 2
target_affine_4x4[3, 3] = 1.
img_3d_affine = resample_img(img, target_affine=target_affine_3x3)
img_4d_affine = resample_img(img, target_affine=target_affine_4x4)
target_affine_mm_space_offset_changed = np.eye(4)
target_affine_mm_space_offset_changed[:3, 3] = \
Пример #19
0
 def get_data_each(self, int_file):
     self.idx_file = int_file
     data_temp = self.lr_thread.data_result
     self.data_temp.append(ni.Nifti1Image(data_temp, ni.load(self.path_cbf[self.idx_file]).affine, ni.load(self.path_cbf[self.idx_file]).header))
Пример #20
0
 CCA_classes = np.zeros([pred.shape[0], pred.shape[1], pred.shape[2], 8])
 error = np.zeros([pred.shape[0], pred.shape[1], pred.shape[2], 8])
 for m in range(CCA_classes.shape[-1]):
     labelled_mask, num_labels = ndimage.label(sep_classes[:, :, :, m])
     largest_cc_mask = (labelled_mask == (
         np.bincount(labelled_mask.flat)[1:].argmax() + 1))
     CCA_classes[:, :, :, m] = largest_cc_mask
     labelled_mask[largest_cc_mask] = 0
     labelled_mask[labelled_mask > 0] = 1
     error[:, :, :, m] = labelled_mask
 classes = CCA_classes.argmax(axis=3)
 all_errors = error.argmax(axis=3)
 all_errors[all_errors > 0] = 1
 classes = classes.astype(np.float64)
 all_errors = all_errors.astype(np.float64)
 classes[all_errors == 1] = np.nan
 invalid = np.isnan(classes)
 ind = ndimage.distance_transform_edt(invalid,
                                      return_distances=False,
                                      return_indices=True)
 postproc = classes[tuple(ind)].astype('uint32')
 postproc[postproc == 1] = 500
 postproc[postproc == 2] = 600
 postproc[postproc == 3] = 420
 postproc[postproc == 4] = 550
 postproc[postproc == 5] = 205
 postproc[postproc == 6] = 820
 postproc[postproc == 7] = 850
 labBox = nib.Nifti1Image(postproc, b0.affine, new_header_b)
 index = n + 1
 nib.save(labBox, 'WHS/Results/nii/ct_test_20{}_label.nii.gz'.format(index))
Пример #21
0
def map_to_brain(image_3d,brain_mask,axis="axial",rotations=3):
    '''map_to_brain
    map 3d data matrix onto a brain_mask, specified by axis. If axis is not valid, will return False. If valid, will return nibabel.Nifti1Image
    :param image_3d: numpy array read in from read_png. Usually of shape (512, 512, N), where N is 3 for 3D image, and 4 for png with alpha. If an alpha channel is found, pixels with 0 alpha will be rendered as transparent (0).
    '''
    R = image_3d[:,:,0]
    G = image_3d[:,:,1]
    B = image_3d[:,:,2]

    axis = axis.lower()

    # Convert to integer value
    rgb = R;
    rgb = (rgb << 8) + G
    rgb = (rgb << 8) + B

    # Normalize
    rgb = (rgb - rgb.mean()) / rgb.std()
    rgb = numpy.rot90(rgb, k=rotations)

    # Houston, we have alpha!
    alpha_channel = False
    if image_3d.shape[2] == 4:
        alpha_channel = True

    if axis == "axial":
        width = brain_mask.shape[0]
        height = brain_mask.shape[1]
    else:
        print "Invalid specification of atlas, %s. Currently only supported is axial." %axis
        return False

    # Only square images, sorry
    if rgb.shape[0] != rgb.shape[1]:
        print "Sorry, only square images are currently supported."
        return False

    # We will interpolate down the largest dimension of the image
    if rgb.shape[0] >= rgb.shape[1]: 
        scale =  float(width)/rgb.shape[0]
    else:
        scale = float(height)/rgb.shape[1]

    # order 0 means nearest interpolation
    scaled = scipy.ndimage.zoom(rgb, scale, order=0)
    if alpha_channel:
        scaled_alpha = scipy.ndimage.zoom(image_3d[:,:,3], scale, order=0)
        scaled[scaled_alpha==0] = 0

    # Calculate left and right padding, keep as ints to take floor
    padding_width = (width - scaled.shape[0]) /2
    padding_height = (height - scaled.shape[1]) /2
    padded = numpy.pad(scaled, ((padding_width,padding_width), # Default value is 0
                               (padding_height,padding_height)),mode="constant")

    # Create array of same size as brainmap, just in case we are off a bit
    array = numpy.zeros((width,height))

    # This is slow and stupid, but it will work
    for x in range(width):
        for y in range(height):
            try:
                array[x,y] = padded[x,y]
            except:
                pass

    # Let's write the image to all slices
    empty_brain = numpy.zeros(brain_mask.shape)
    mask = brain_mask.get_data()

    # Add support for other axis?
    if axis == "axial":

        for z in range(brain_mask.shape[2]):
            zslice = mask[:,:,z] 
            empty_brain[zslice!=0,z] = array[zslice!=0]

    nii = nibabel.Nifti1Image(empty_brain,affine=brain_mask.get_affine())
    return nii
Пример #22
0
def _create_image(image_shape):
    data = np.asarray(np.arange(np.prod(image_shape)).reshape(image_shape),
                      dtype=np.float)
    affine = np.zeros((4, 4))
    np.fill_diagonal(affine, 1)
    return nib.Nifti1Image(data, affine)
Пример #23
0
def TrainODModel():
  # load database
  print('loading memory map db for large dataset')
  #npdatabase = np.load(options.globalnpfile,mmap_mode='r')
  npdatabase = np.load(options.globalnpfile)

  # Training dataset
  dataset_train = ShapesDataset()
  dataset_train.load_shapes('train',npdatabase )
  dataset_train.prepare()
  
  # Validation dataset
  dataset_val = ShapesDataset()
  dataset_val.load_shapes('validate',npdatabase )
  dataset_val.prepare()

  # ensure we get the same results each time we run the code
  np.random.seed(seed=0) 
  #np.random.shuffle(dataset_train.dbsubset )
  #np.random.shuffle(dataset_val.dbsubset)

  ## # subset within bounding box that has liver
  ## totnslice = len(dataset_train.dbsubset ) + len(dataset_val.dbsubset)
  ## slicesplit =  len(dataset_train.dbsubset )
  ## print("nslice: ",totnslice ," split: " ,slicesplit )

  ## # FIXME - Verify stacking indicies
  ## x_train=np.vstack((dataset_train.dbsubset ['imagedata'],dataset_val.dbsubset['imagedata']))
  ## y_train=np.vstack((dataset_train.dbsubset ['truthdata'],dataset_val.dbsubset['truthdata']))
  ## TRAINING_SLICES      = slice(0,slicesplit)
  ## VALIDATION_SLICES    = slice(slicesplit,totnslice)

  # In[6]:
  
  # Load and display random samples
  image_ids = np.random.choice(dataset_train.image_ids, 20)
  print(image_ids)
  import nibabel as nib  
  for image2did in image_ids:
      image     = dataset_train.load_image(image2did)
      imageinfo = dataset_train.image_reference(image2did)
      mask, class_ids = dataset_train.load_mask(image2did)
      print(imageinfo,image2did,image.shape, mask.shape, class_ids, dataset_train.class_names)
      #visualize.display_top_masks(np.squeeze(image), mask, class_ids, dataset_train.class_names,image2did)
      original_image, image_meta, gt_class_id, gt_bbox, gt_mask =    modellib.load_image_gt(dataset_train, config, image2did, use_mini_mask=False)
      #visualize.display_instances(np.repeat(original_image,3,axis=2), gt_bbox, gt_mask, gt_class_id, dataset_train.class_names, figsize=(8, 8))
      objmask = np.zeros( gt_mask.shape[0:2], dtype='uint8' )
      for iii,idclass in enumerate(gt_class_id):
          objmask[gt_bbox[iii][0]:gt_bbox[iii][2], gt_bbox[iii][1]:gt_bbox[iii][3] ] = 1
          objmask = objmask + idclass*gt_mask[:,:,iii].astype('uint8')

      segnii = nib.Nifti1Image(objmask.astype('uint8') , None )
      segnii.to_filename( 'tmp/mask.%05d.nii.gz'  % image2did )
      imgnii = nib.Nifti1Image(image , None )
      imgnii.to_filename( 'tmp/image.%05d.nii.gz' % image2did )

  # ## Create Model
  
  # In[ ]:
  
  # Create model in training mode
  model = modellib.MaskRCNN(mode="training", config=config,
                            model_dir=MODEL_DIR)
  
  
  # In[7]:
  
  
  # Which weights to start with?
  init_with = "coco"  # imagenet, coco, or last
  init_with = "last"  # imagenet, coco, or last
  
  # ## Training
  # 
  # Train in two stages:
  # 1. Only the heads. Here we're freezing all the backbone layers and training only the randomly initialized layers (i.e. the ones that we didn't use pre-trained weights from MS COCO). To train only the head layers, pass `layers='heads'` to the `train()` function.
  # 
  # 2. Fine-tune all layers. For this simple example it's not necessary, but we're including it to show the process. Simply pass `layers="all` to train all layers.
  
  if init_with == "imagenet":
      model.load_weights(model.get_imagenet_weights(), by_name=True)
      raise(" freeze backbone ?  input error")
  elif init_with == "coco":
      # Load weights trained on MS COCO, but skip layers that
      # are different due to the different number of classes
      # See README for instructions to download the COCO weights
      model.load_weights(COCO_MODEL_PATH, by_name=True,
                         exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", 
                                  "mrcnn_bbox", "mrcnn_mask","conv1"])
  
      # Train the head branches
      # Passing layers="heads" freezes all layers except the head
      # layers. You can also pass a regular expression to select
      # which layers to train by name pattern.
      model.train(dataset_train, dataset_val, 
                  learning_rate=config.LEARNING_RATE, 
                  epochs=100, 
                  layers='heads')
  
  elif init_with == "last":
      # Load the last model you trained and continue training
      model.load_weights(model.find_last(), by_name=True)
  
  # Fine tune all layers
  # Passing layers="all" trains all layers. You can also 
  # pass a regular expression to select which layers to
  # train by name pattern.
  model.train(dataset_train, dataset_val, 
              learning_rate=config.LEARNING_RATE/10.,
              epochs=500, 
              layers="all")
  
  # Save weights
  # Typically not needed because callbacks save after every epoch
  # Uncomment to save manually
  model_path = os.path.join(MODEL_DIR, "mask_rcnn_tumor.h5")
  model.keras_model.save_weights(model_path)
def save_nifti(fname, data, affine):
    result_img = nib.Nifti1Image(data, affine)
    result_img.to_filename(fname)
Пример #25
0
    def fit(self, niimgs, y):
        """Fit the searchlight

        Parameters
        ----------
        niimg : niimg
            4D image.

        y : 1D array-like
            Target variable to predict. Must have exactly as many elements as
            3D images in niimg.

        Attributes
        ----------
        `scores_` : numpy.ndarray
            search_light scores. Same shape as input parameter
            process_mask_img.
        """

        # Compute world coordinates of all in-mask voxels.
        mask, mask_affine = masking._load_mask_img(self.mask_img)
        mask_coords = np.where(mask != 0)
        mask_coords = np.asarray(
            mask_coords + (np.ones(len(mask_coords[0]), dtype=np.int), ))
        mask_coords = np.dot(mask_affine, mask_coords)[:3].T

        # Compute world coordinates of all in-process mask voxels
        if self.process_mask_img is None:
            process_mask = mask
            process_mask_coords = mask_coords
        else:
            process_mask, process_mask_affine = \
                masking._load_mask_img(self.process_mask_img)
            process_mask_coords = np.where(process_mask != 0)
            process_mask_coords = \
                np.asarray(process_mask_coords
                           + (np.ones(len(process_mask_coords[0]),
                                      dtype=np.int),))
            process_mask_coords = np.dot(process_mask_affine,
                                         process_mask_coords)[:3].T

        clf = neighbors.NearestNeighbors(radius=self.radius)
        A = clf.fit(mask_coords).radius_neighbors_graph(process_mask_coords)
        del process_mask_coords, mask_coords
        A = A.tolil()

        # scores is an 1D array of CV scores with length equals to the number
        # of voxels in processing mask (columns in process_mask)
        X = masking._apply_mask_fmri(
            niimgs,
            nibabel.Nifti1Image(as_ndarray(mask, dtype=np.int8), mask_affine))

        estimator = self.estimator
        if isinstance(estimator, basestring):
            estimator = ESTIMATOR_CATALOG[estimator]()

        scores = search_light(X, y, estimator, A, self.scoring, self.cv,
                              self.n_jobs, self.verbose)
        scores_3D = np.zeros(process_mask.shape)
        scores_3D[process_mask] = scores
        self.scores_ = scores_3D
        return self
Пример #26
0
def saveNifti(dataIn, fileName, affMatrix=None):
    if affMatrix is None:
        affMatrix = np.eye(4)

    img = nib.Nifti1Image(dataIn, affMatrix)
    nib.save(img, fileName)
Пример #27
0
def pred_to_nib(data_lst: List[np.ndarray],
                z_lst: List[int],
                fname_ref: str,
                fname_out: str,
                slice_axis: int,
                debug: bool = False,
                kernel_dim: str = '2d',
                bin_thr: float = 0.5,
                discard_noise: bool = True,
                postprocessing: dict = None) -> nib.Nifti1Image:
    """Save the network predictions as nibabel object.

    Based on the header of `fname_ref` image, it creates a nibabel object from the Network predictions (`data_lst`).

    Args:
        data_lst (list of np arrays): Predictions, either 2D slices either 3D patches.
        z_lst (list of ints): Slice indexes to reconstruct a 3D volume for 2D slices.
        fname_ref (str): Filename of the input image: its header is copied to the output nibabel object.
        fname_out (str): If not None, then the generated nibabel object is saved with this filename.
        slice_axis (int): Indicates the axis used for the 2D slice extraction: Sagittal: 0, Coronal: 1, Axial: 2.
        debug (bool): If True, extended verbosity and intermediate outputs.
        kernel_dim (str): Indicates whether the predictions were done on 2D or 3D patches. Choices: '2d', '3d'.
        bin_thr (float): If positive, then the segmentation is binarized with this given threshold. Otherwise, a soft
            segmentation is output.
        discard_noise (bool): If True, predictions that are lower than 0.01 are set to zero.
        postprocessing (dict): Contains postprocessing steps to be applied.

    Returns:
        nibabel.Nifti1Image: NiBabel object containing the Network prediction.
    """

    # Check fname_ref extention and update path if not NifTI
    fname_ref = imed_loader_utils.update_filename_to_nifti(fname_ref)

    # Load reference nibabel object
    nib_ref = nib.load(fname_ref)
    nib_ref_can = nib.as_closest_canonical(nib_ref)

    if kernel_dim == '2d':
        # complete missing z with zeros
        tmp_lst = []
        for z in range(nib_ref_can.header.get_data_shape()[slice_axis]):
            if z not in z_lst:
                tmp_lst.append(np.zeros(data_lst[0].shape))
            else:
                tmp_lst.append(data_lst[z_lst.index(z)])

        if debug:
            logger.debug(f"Len {len(tmp_lst)}")
            for arr in tmp_lst:
                logger.debug(f"Shape element lst {arr.shape}")

        # create data and stack on depth dimension
        arr_pred_ref_space = np.stack(tmp_lst, axis=-1)

    else:
        arr_pred_ref_space = data_lst[0]

    n_channel = arr_pred_ref_space.shape[0]
    oriented_volumes = []
    if len(arr_pred_ref_space.shape) == 4:
        for i in range(n_channel):
            oriented_volumes.append(
                imed_loader_utils.reorient_image(arr_pred_ref_space[i, ],
                                                 slice_axis, nib_ref,
                                                 nib_ref_can))
        # transpose to locate the channel dimension at the end to properly see image on viewer
        arr_pred_ref_space = np.asarray(oriented_volumes).transpose(
            (1, 2, 3, 0))
    else:
        arr_pred_ref_space = imed_loader_utils.reorient_image(
            arr_pred_ref_space, slice_axis, nib_ref, nib_ref_can)

    if bin_thr >= 0:
        arr_pred_ref_space = imed_postpro.threshold_predictions(
            arr_pred_ref_space, thr=bin_thr)
    elif discard_noise:  # discard noise
        arr_pred_ref_space[arr_pred_ref_space <= 1e-2] = 0

    # create nibabel object
    if postprocessing:
        fname_prefix = fname_out.split(
            "_pred.nii.gz")[0] if fname_out is not None else None
        postpro = imed_postpro.Postprocessing(postprocessing,
                                              arr_pred_ref_space,
                                              nib_ref.header['pixdim'][1:4],
                                              fname_prefix)
        arr_pred_ref_space = postpro.apply()

    # Here we prefer to copy the header (rather than just the affine matrix), in order to preserve the qform_code.
    # See: https://github.com/ivadomed/ivadomed/issues/711
    nib_pred = nib.Nifti1Image(dataobj=arr_pred_ref_space,
                               affine=nib_ref.header.get_best_affine(),
                               header=nib_ref.header.copy())
    # save as NifTI file
    if fname_out is not None:
        nib.save(nib_pred, fname_out)

    return nib_pred
Пример #28
0
def main():
    cleanup=True
    verbose=False
    scriptdir=os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) # script directory

    template=resource_filename(Requirement.parse("pydeface"), 'data/mean_reg2mean.nii.gz')
    facemask=resource_filename(Requirement.parse("pydeface"), "data/facemask.nii.gz")

    try:
        assert os.path.exists(facemask)
    except:
        raise Exception('missing facemask: %s'%facemask)

    try:
        assert os.path.exists(template)
    except:
        raise Exception('missing template: %s'%template)



    if len(sys.argv)<2:
        usage()
        sys.exit(2)
    else:
        infile=sys.argv[1]

    if len(sys.argv)>2:
        outfile=sys.argv[2]
    else:
        outfile=infile.replace('.nii.gz','_defaced.nii.gz')
    try:
        assert not os.path.exists(outfile)
    except:
        raise Exception('%s already exists, remove it first'%outfile)

    if os.environ.has_key('FSLDIR'):
        FSLDIR=os.environ['FSLDIR']
    else:
        print 'FSL must be installed and FSLDIR environment variable must be defined'
        sys.exit(2)


    foo,tmpmat=tempfile.mkstemp()
    tmpmat=tmpmat+'.mat'
    foo,tmpfile=tempfile.mkstemp()
    tmpfile=tmpfile+'.nii.gz'
    if verbose:
        print tmpmat
        print tmpfile
    foo,tmpfile2=tempfile.mkstemp()
    foo,tmpmat2=tempfile.mkstemp()

    print 'defacing',infile
    # register template to infile

    flirt=fsl.FLIRT()
    flirt.inputs.cost_func='mutualinfo'
    flirt.inputs.in_file=template
    flirt.inputs.out_matrix_file=tmpmat
    flirt.inputs.out_file=tmpfile2
    flirt.inputs.reference=infile
    flirt.run()

    # warp facemask to infile
    flirt=fsl.FLIRT()
    flirt.inputs.in_file=facemask
    flirt.inputs.in_matrix_file=tmpmat
    flirt.inputs.apply_xfm=True
    flirt.inputs.reference=infile
    flirt.inputs.out_file=tmpfile
    flirt.inputs.out_matrix_file=tmpmat2
    flirt.run()

    # multiply mask by infile and save

    infile_img=nibabel.load(infile)
    tmpfile_img=nibabel.load(tmpfile)
    outdata=infile_img.get_data()*tmpfile_img.get_data()
    outfile_img=nibabel.Nifti1Image(outdata,infile_img.get_affine(),infile_img.get_header())
    outfile_img.to_filename(outfile)

    if cleanup:
        os.remove(tmpfile)
        os.remove(tmpfile2)
        os.remove(tmpmat)
Пример #29
0
def plot_brainrsa_surface(img, threshold=None):
    """
    Plot the RSA-result into a brain surface

    Parameters
    ----------
    img : string
        The file path of the .nii file of the RSA results.
    threshold : None or int. Default is None.
        The threshold of the number of voxels used in correction.
        If threshold=n, only the similarity clusters consisting more than threshold voxels will be visible. If it is
        None, the threshold-correction will not work.
    """

    imgarray = nib.load(img).get_data()

    if (imgarray == np.nan).all() == True:

        print("No Valid Results")

    else:

        if threshold != None:

            imgarray = nib.load(img).get_data()
            affine = get_affine(img)
            imgarray = correct_by_threshold(imgarray, threshold)
            img = nib.Nifti1Image(imgarray, affine)

        fsaverage = datasets.fetch_surf_fsaverage(mesh='fsaverage')
        texture_left = surface.vol_to_surf(img, fsaverage.pial_left)
        texture_right = surface.vol_to_surf(img, fsaverage.pial_right)

        plotting.plot_surf_stat_map(fsaverage.pial_left,
                                    texture_left,
                                    hemi='left',
                                    threshold=0.1,
                                    bg_map=fsaverage.sulc_right,
                                    colorbar=False,
                                    vmax=0.8,
                                    darkness=0.7)

        plotting.plot_surf_stat_map(fsaverage.pial_right,
                                    texture_right,
                                    hemi='right',
                                    threshold=0.1,
                                    bg_map=fsaverage.sulc_right,
                                    colorbar=True,
                                    vmax=0.8,
                                    darkness=0.7)

        plotting.plot_surf_stat_map(fsaverage.pial_right,
                                    texture_left,
                                    hemi='left',
                                    threshold=0.1,
                                    bg_map=fsaverage.sulc_right,
                                    colorbar=False,
                                    vmax=0.8,
                                    darkness=0.7)

        plotting.plot_surf_stat_map(fsaverage.pial_left,
                                    texture_right,
                                    hemi='right',
                                    threshold=0.1,
                                    bg_map=fsaverage.sulc_right,
                                    colorbar=True,
                                    vmax=0.8,
                                    darkness=0.7)

        plt.show()
Пример #30
0
#Load data
img = nib.load('./data.nii.gz')
data = img.get_data()

#build mask
gtab = dpg.gradient_table('./bvals', './bvecs', b0_threshold=10)
mean_b0 = np.mean(data[..., gtab.b0s_mask], -1)
_, mask = median_otsu(mean_b0,
                      4,
                      2,
                      False,
                      vol_idx=np.where(gtab.b0s_mask),
                      dilate=1)

if not op.exists('./mask.nii.gz'):
    nib.save(nib.Nifti1Image(mask.astype(int), img.affine), 'mask.nii.gz')

# denoise
from dipy.denoise import nlmeans
from dipy.denoise.noise_estimate import estimate_sigma

sigma = estimate_sigma(data)
denoised_data = nlmeans.nlmeans(data, sigma=sigma, mask=mask)

if not op.exists('./denoised_data.nii.gz'):
    nib.save(nib.Nifti1Image(denoised_data, img.affine),
             'denoised_data.nii.gz')

#tensor model
import dipy.reconst.dti as dti