Пример #1
0
 def apply(self, x, mode):
     self._check_input(x, mode)
     if mode == self.TIMES:
         y = ift.from_global_data(self._target, x.to_global_data())
     if mode == self.INVERSE_TIMES:
         y = ift.from_global_data(self._domain, x.to_global_data())
     if mode == self.ADJOINT_TIMES:
         y = ift.from_global_data(self._domain, x.to_global_data())
     if mode == self.ADJOINT_INVERSE_TIMES:
         y = ift.from_global_data(self._target, x.to_global_data())
     return y
Пример #2
0
	def apply(self, x, mode):

		self._check_mode(mode)

		if mode == self.TIMES:
		#Here the ordinary applycation of the shear_operator
			array = x.to_global_data()
			sheared = custom_shear(array, self._g1,self._g2)

			return ift.from_global_data(self._target, sheared)

		if mode == self.ADJOINT_TIMES:
		# Here the adjoint is just the inverse, since I have
		# a unitary operator
			array = x.to_global_data()
			inverse_sheared = custom_shear(array, -self._g1,-self._g2)
			return ift.from_global_data(self._target, inverse_sheared)
Пример #3
0
def checkerboard_response(position_space):
    '''Checkerboard mask for 2D mode'''
    mask = np.ones(position_space.shape)
    x, y = position_space.shape
    for i in range(8):
        for j in range(8):
            if (i + j) % 2 == 0:
                mask[i*x//8:(i + 1)*x//8, j*y//8:(j + 1)*y//8] = 0
    mask = ift.from_global_data(position_space, mask)
    return ift.MaskOperator(mask)
Пример #4
0
def test_dataconv():
    f1 = ift.full(dom, 27)
    f2 = ift.from_global_data(dom, f1.to_global_data())
    for key, val in f1.items():
        assert_equal(val.local_data, f2[key].local_data)
    if "d1" not in f2:
        raise KeyError()
    assert_equal({"d1": f1}, f2.to_dict())
    f3 = ift.full(dom, 27+1.j)
    f4 = ift.full(dom, 1.j)
    assert_equal(f2, f3.real)
    assert_equal(f4, f3.imag)
Пример #5
0
def test_trivialities():
    s1 = ift.RGSpace((10, ))
    f1 = ift.Field.full(s1, 27)
    assert_equal(f1.clip(min=29).local_data, 29.)
    assert_equal(f1.clip(max=25).local_data, 25.)
    assert_equal(f1.local_data, f1.real.local_data)
    assert_equal(f1.local_data, (+f1).local_data)
    f1 = ift.Field.full(s1, 27. + 3j)
    assert_equal(f1.one_over().local_data, (1. / f1).local_data)
    assert_equal(f1.real.local_data, 27.)
    assert_equal(f1.imag.local_data, 3.)
    assert_equal(f1.sum(), f1.sum(0))
    assert_equal(f1.conjugate().local_data,
                 ift.Field.full(s1, 27. - 3j).local_data)
    f1 = ift.from_global_data(s1, np.arange(10))
    # assert_equal(f1.min(), 0)
    # assert_equal(f1.max(), 9)
    assert_equal(f1.prod(), 0)
correlated_field = ift.CorrelatedField(position_space, A)

### SETTING UP SPECIFIC SCENARIO ####

R = ift.GeometryRemover(position_space)
data_space = R.target

signal_response = R(correlated_field)


# Set up likelihood and load data
N = ift.ScalingOperator(0.1, data_space)

data, ground_truth = generate_mysterious_data(position_space)
data = ift.from_global_data(data_space, data)

likelihood = ift.GaussianEnergy(mean=data,
                                inverse_covariance=N.inverse)(signal_response)


#### SOLVING PROBLEM ####
ic_sampling = ift.GradientNormController(iteration_limit=100)
ic_newton = ift.GradInfNormController(
    name='Newton', tol=1e-6, iteration_limit=30)
minimizer = ift.NewtonCG(ic_newton)

H = ift.StandardHamiltonian(likelihood, ic_sampling)

initial_mean = ift.MultiField.full(H.domain, 0.)
mean = initial_mean
Пример #7
0
    plot.add(conv_delta, title='Kernel')
    plot.output()


# Healpix test
nside = 64
npix = 12 * nside * nside

domain = ift.HPSpace(nside)

# Define test signal (some point sources)
signal_vals = np.zeros(npix, dtype=np.float64)
for i in range(0, npix, npix // 12 + 27):
    signal_vals[i] = 500.

signal = ift.from_global_data(domain, signal_vals)

delta_vals = np.zeros(npix, dtype=np.float64)
delta_vals[0] = 1.0
delta = ift.from_global_data(domain, delta_vals)


# Define kernel function
def func(theta):
    ct = np.cos(theta)
    return 1. * np.logical_and(ct > 0.7, ct <= 0.8)


convtest(signal, delta, func)

domain = ift.RGSpace((100, 100))
Пример #8
0
import nifty5 as ift
from helpers import generate_wf_data, plot_WF

np.random.seed(42)

# Want to implement: m = Dj = (S^{-1} + R^T N^{-1} R)^{-1} R^T N^{-1} d

position_space = ift.RGSpace(256)

prior_spectrum = lambda k: 1 / (10. + k**2.5)
data, ground_truth = generate_wf_data(position_space, prior_spectrum)

R = ift.GeometryRemover(position_space)
data_space = R.target
data = ift.from_global_data(data_space, data)

ground_truth = ift.from_global_data(position_space, ground_truth)
plot_WF('data', ground_truth, data)

N = ift.ScalingOperator(0.1, data_space)

harmonic_space = position_space.get_default_codomain()
HT = ift.HartleyOperator(harmonic_space, target=position_space)

S_h = ift.create_power_operator(harmonic_space, prior_spectrum)
S = HT @ S_h @ HT.adjoint

D_inv = S.inverse + R.adjoint @ N.inverse @ R
j = (R.adjoint @ N.inverse)(data)
Пример #9
0
def plot_prior_samples_2d(n_samps,
                          signal,
                          R,
                          correlated_field,
                          A,
                          likelihood,
                          N=None):
    samples, pspecmin, pspecmax = [], np.inf, 0
    pspec = A * A
    for _ in range(n_samps):
        ss = ift.from_random('normal', signal.domain)
        samples.append(ss)
        foo = pspec.force(ss).to_global_data()
        pspecmin = min([min(foo), pspecmin])
        pspecmax = max([max(foo), pspecmin])

    fig, ax = plt.subplots(nrows=n_samps,
                           ncols=5,
                           figsize=(2 * 5, 2 * n_samps))
    for ii, sample in enumerate(samples):
        cf = correlated_field(sample)
        signal_response = R @ signal
        sg = signal(sample)
        sr = (R.adjoint @ R @ signal)(sample)
        if likelihood == 'gauss':
            data = signal_response(sample) + N.draw_sample()
        elif likelihood == 'poisson':
            rate = signal_response(sample).to_global_data()
            data = ift.from_global_data(signal_response.target,
                                        np.random.poisson(rate))
        elif likelihood == 'bernoulli':
            rate = signal_response(sample).to_global_data()
            data = ift.from_global_data(signal_response.target,
                                        np.random.binomial(1, rate))
        else:
            raise ValueError('likelihood type not implemented')
        data = R.adjoint(data + 0.)

        As = pspec.force(sample)
        ax[ii, 0].plot(As.domain[0].k_lengths, As.to_global_data())
        ax[ii, 0].set_ylim(pspecmin, pspecmax)
        ax[ii, 0].set_yscale('log')
        ax[ii, 0].set_xscale('log')
        ax[ii, 0].get_xaxis().set_visible(False)

        ax[ii, 1].imshow(cf.to_global_data(), aspect='auto')
        ax[ii, 1].get_xaxis().set_visible(False)
        ax[ii, 1].get_yaxis().set_visible(False)

        ax[ii, 2].imshow(sg.to_global_data(), aspect='auto')
        ax[ii, 2].get_xaxis().set_visible(False)
        ax[ii, 2].get_yaxis().set_visible(False)

        ax[ii, 3].imshow(sr.to_global_data(), aspect='auto')
        ax[ii, 3].get_xaxis().set_visible(False)
        ax[ii, 3].get_yaxis().set_visible(False)

        ax[ii, 4].imshow(data.to_global_data(), cmap='viridis', aspect='auto')
        ax[ii, 4].get_xaxis().set_visible(False)
        ax[ii, 4].yaxis.tick_right()
        ax[ii, 4].get_yaxis().set_visible(False)

        if ii == 0:
            ax[0, 0].set_title('power spectrum')
            ax[0, 1].set_title('correlated field')
            ax[0, 2].set_title('signal')
            ax[0, 3].set_title('signal Response')
            ax[0, 4].set_title('synthetic data')

        ax[n_samps - 1, 0].get_xaxis().set_visible(True)
    plt.tight_layout()
    plt.savefig('prior_samples_{}.png'.format(likelihood))
    plt.close('all')
Пример #10
0
def test_multifield_field_consistency():
    f1 = ift.full(dom, 27)
    f2 = ift.from_global_data(dom['d1'], f1['d1'].to_global_data())
    assert_equal(f1.sum(), f2.sum())
    assert_equal(f1.size, f2.size)
Пример #11
0
def test_cast_domain():
    s1 = ift.RGSpace((10, ))
    s2 = ift.RGSpace((10, ), distances=20.)
    d = np.arange(s1.shape[0])
    d2 = ift.from_global_data(s1, d).cast_domain(s2).to_global_data()
    assert_equal(d, d2)
Пример #12
0
def test_dataconv():
    s1 = ift.RGSpace((10, ))
    ld = np.arange(ift.dobj.local_shape(s1.shape)[0])
    gd = np.arange(s1.shape[0])
    assert_equal(ld, ift.from_local_data(s1, ld).local_data)
    assert_equal(gd, ift.from_global_data(s1, gd).to_global_data())
Пример #13
0
"""
Make the ground_truth image from gal, and define the position space
"""
gal = galsim.Gaussian(flux = gal_flux, scale_radius = gal_r0)
image_original = gal.drawImage(scale = pixel_scale)
image_sheared_galsim = i

plt.imshow(image_original.array)
plt.show()
exit()

image_original_arr = np.asarray(image_original.array)

position_space = ift.RGSpace(image_original_arr.shape)

ground_truth = ift.from_global_data(position_space, image_original_arr)

# It would be better to enforce the positivity of my prior spectrum
# by using lognormal
prior_spectrum = lambda k: 5/(10. + k**2.)	
"""
Make the data, which is the sheared image, with known shear
and the shear operator which would be my instrument response
"""

R = ShearOperator(position_space, g1, g2)

data_space = R.target

sheared_image = custom_shear(image_original_arr, g1=g1,g2=g2)
"""