Пример #1
0
 def test_huber_continuous(self):
     with self.test_session():
         epsilon = tf.constant(
             1e-10, dtype=tf.float32)
         predicted = tf.constant(
             [1], dtype=tf.float32, name='predicted')
         gold_standard = tf.constant(
             [0], dtype=tf.float32, name='gold_standard')
         huber_loss_inside_delta = huber_loss(
             predicted + epsilon, gold_standard, delta=1.0)
         huber_loss_outside_delta = huber_loss(
             predicted - epsilon, gold_standard, delta=1.0)
         self.assertAlmostEqual(huber_loss_inside_delta.eval(),
                                huber_loss_outside_delta.eval())
Пример #2
0
 def test_huber_continuous(self):
     with self.test_session():
         epsilon = tf.constant(1e-10, dtype=tf.float32)
         predicted = tf.constant([1], dtype=tf.float32, name='predicted')
         gold_standard = tf.constant([0],
                                     dtype=tf.float32,
                                     name='gold_standard')
         huber_loss_inside_delta = huber_loss(predicted + epsilon,
                                              gold_standard,
                                              delta=1.0)
         huber_loss_outside_delta = huber_loss(predicted - epsilon,
                                               gold_standard,
                                               delta=1.0)
         self.assertAlmostEqual(huber_loss_inside_delta.eval(),
                                huber_loss_outside_delta.eval())
Пример #3
0
 def test_huber_loss(self):
     with self.test_session():
         predicted = tf.constant([[0, 10], [10, 0], [10, 0], [10, 0]],
                                 dtype=tf.float32,
                                 name='predicted')
         gold_standard = tf.constant([[0, 10], [10, 0], [10, 0], [10, 0]],
                                     dtype=tf.float32,
                                     name='gold_standard')
         self.assertEqual(huber_loss(predicted, gold_standard).eval(), 0.0)
Пример #4
0
 def test_huber_loss(self):
     with self.test_session():
         predicted = tf.constant(
             [[0, 10], [10, 0], [10, 0], [10, 0]],
             dtype=tf.float32, name='predicted')
         gold_standard = tf.constant(
             [[0, 10], [10, 0], [10, 0], [10, 0]],
             dtype=tf.float32, name='gold_standard')
         self.assertEqual(huber_loss(predicted, gold_standard).eval(), 0.0)
Пример #5
0
 def test_huber_loss_hand_example(self):
     with self.test_session():
         # loss should be: mean( 0.2 ** 2/ 2 + (2-0.5) ) == 1.52/2 == 0.76
         predicted = tf.constant(
             [1.2, 1], dtype=tf.float32, name='predicted')
         gold_standard = tf.constant(
             [1, 3], dtype=tf.float32, name='gold_standard')
         loss = huber_loss(predicted, gold_standard, delta=1.0)
         self.assertAlmostEqual(loss.eval(), .76)
Пример #6
0
 def test_huber_loss_hand_example(self):
     with self.test_session():
         # loss should be: mean( 0.2 ** 2/ 2 + (2-0.5) ) == 1.52/2 == 0.76
         predicted = tf.constant([1.2, 1],
                                 dtype=tf.float32,
                                 name='predicted')
         gold_standard = tf.constant([1, 3],
                                     dtype=tf.float32,
                                     name='gold_standard')
         loss = huber_loss(predicted, gold_standard, delta=1.0)
         self.assertAlmostEqual(loss.eval(), .76)