def test_vec_to_sym_matrix():
    # Check error if unsuitable size
    vec = np.ones(31)
    with pytest.raises(ValueError, match='Vector of unsuitable shape'):
        vec_to_sym_matrix(vec)

    # Check error if given diagonal shape incompatible with vec
    vec = np.ones(3)
    diagonal = np.zeros(4)
    with pytest.raises(ValueError, match='incompatible with vector'):
        vec_to_sym_matrix(vec, diagonal)

    # Check output value is correct
    vec = np.ones(6, )
    sym = np.array([[sqrt(2), 1., 1.], [1., sqrt(2), 1.],
                    [1., 1., sqrt(2)]])
    assert_array_almost_equal(vec_to_sym_matrix(vec), sym)

    # Check output value is correct with seperate diagonal
    vec = np.ones(3, )
    diagonal = np.ones(3)
    assert_array_almost_equal(vec_to_sym_matrix(vec, diagonal=diagonal), sym)

    # Check vec_to_sym_matrix is the inverse function of sym_matrix_to_vec
    # when diagonal is included
    assert_array_almost_equal(vec_to_sym_matrix(sym_matrix_to_vec(sym)), sym)

    # when diagonal is discarded
    vec = sym_matrix_to_vec(sym, discard_diagonal=True)
    diagonal = np.diagonal(sym) / sqrt(2)
    assert_array_almost_equal(vec_to_sym_matrix(vec, diagonal=diagonal), sym)
def test_vec_to_sym_matrix():
    # Check error if unsuitable size
    vec = np.ones(31)
    assert_raises_regex(ValueError, 'Vector of unsuitable shape',
                        vec_to_sym_matrix, vec)

    # Check error if given diagonal shape incompatible with vec
    vec = np.ones(3)
    diagonal = np.zeros(4)
    assert_raises_regex(ValueError, 'incompatible with vector',
                        vec_to_sym_matrix, vec, diagonal)

    # Check output value is correct
    vec = np.ones(6, )
    sym = np.array([[sqrt(2), 1., 1.], [1., sqrt(2), 1.],
                    [1., 1., sqrt(2)]])
    assert_array_almost_equal(vec_to_sym_matrix(vec), sym)

    # Check output value is correct with seperate diagonal
    vec = np.ones(3, )
    diagonal = np.ones(3)
    assert_array_almost_equal(vec_to_sym_matrix(vec, diagonal=diagonal), sym)

    # Check vec_to_sym_matrix is the inverse function of sym_matrix_to_vec
    # when diagonal is included
    assert_array_almost_equal(vec_to_sym_matrix(sym_matrix_to_vec(sym)), sym)

    # when diagonal is discarded
    vec = sym_matrix_to_vec(sym, discard_diagonal=True)
    diagonal = np.diagonal(sym) / sqrt(2)
    assert_array_almost_equal(vec_to_sym_matrix(vec, diagonal=diagonal), sym)
Пример #3
0
    def fit(self, X, y=None):
        """Fit PoSCE to the given time series for each subject

        Parameters
        ----------
        X : list of n_subjects numpy.ndarray, shapes (n_samples, n_features)
            The input subjects time series. The number of samples may differ
            from one subject to another

        Returns
        -------
        self : PopulationShrunkCovariance instance
            The object itself. Useful for chaining operations.
        """
        # compute covariances from timeseries
        self.cov_estimator_ = clone(self.cov_estimator)
        covariances = [self.cov_estimator_.fit(x).covariance_ for x in X]

        # compute prior mean
        if self.prior_mean_type == "geometric":
            self.prior_mean_ = _geometric_mean(covariances,
                                               max_iter=30,
                                               tol=1e-7)
        elif self.prior_mean_type == "empirical":
            self.prior_mean_ = np.mean(covariances, axis=0)
        else:
            raise ValueError("Allowed mean types are"
                             '"geometric", "euclidean"'
                             ', got type "{}"'.format(self.prior_mean_type))
        self.prior_whitening_ = _map_eigenvalues(lambda x: 1.0 / np.sqrt(x),
                                                 self.prior_mean_)
        self.prior_whitening_inv_ = _map_eigenvalues(lambda x: np.sqrt(x),
                                                     self.prior_mean_)

        # compute the population prior dispersion
        connectivities = [
            _map_eigenvalues(
                np.log,
                self.prior_whitening_.dot(cov).dot(self.prior_whitening_))
            for cov in covariances
        ]
        connectivities = np.array(connectivities)
        connectivities = sym_matrix_to_vec(connectivities)
        self.prior_cov_ = np.mean(
            [
                np.expand_dims(c, 1).dot(np.expand_dims(c, 0))
                for c in connectivities
            ],
            axis=0,
        )
        # approximate the population prior dispersion
        self.prior_cov_approx_ = regularized_eigenvalue_decomposition(
            self.prior_cov_, explained_variance_threshold=0.7)
        return self
def test_sym_matrix_to_vec():
    sym = np.ones((3, 3))
    sqrt2 = 1. / sqrt(2.)
    vec = np.array([sqrt2, 1., sqrt2, 1., 1., sqrt2])
    assert_array_almost_equal(sym_matrix_to_vec(sym), vec)

    vec = np.array([1., 1., 1.])
    assert_array_almost_equal(sym_matrix_to_vec(sym, discard_diagonal=True),
                              vec)

    # Check sym_matrix_to_vec is the inverse function of vec_to_sym_matrix
    n = 5
    p = n * (n + 1) // 2
    rand_gen = np.random.RandomState(0)
    # when diagonal is included
    vec = rand_gen.rand(p)
    sym = vec_to_sym_matrix(vec)
    assert_array_almost_equal(sym_matrix_to_vec(sym), vec)

    # when diagonal given separately
    diagonal = rand_gen.rand(n + 1)
    sym = vec_to_sym_matrix(vec, diagonal=diagonal)
    assert_array_almost_equal(sym_matrix_to_vec(sym, discard_diagonal=True),
                              vec)

    # multiple matrices case when diagonal is included
    vecs = np.asarray([vec, 2. * vec, 0.5 * vec])
    syms = vec_to_sym_matrix(vecs)
    assert_array_almost_equal(sym_matrix_to_vec(syms), vecs)

    # multiple matrices case when diagonal is given seperately
    diagonals = np.asarray([diagonal, 3. * diagonal, -diagonal])
    syms = vec_to_sym_matrix(vecs, diagonal=diagonals)
    assert_array_almost_equal(sym_matrix_to_vec(syms, discard_diagonal=True),
                              vecs)
def test_sym_matrix_to_vec():
    sym = np.ones((3, 3))
    sqrt2 = 1. / sqrt(2.)
    vec = np.array([sqrt2, 1., sqrt2, 1., 1., sqrt2])
    assert_array_almost_equal(sym_matrix_to_vec(sym), vec)

    vec = np.array([1., 1., 1.])
    assert_array_almost_equal(sym_matrix_to_vec(sym, discard_diagonal=True),
                              vec)

    # Check sym_matrix_to_vec is the inverse function of vec_to_sym_matrix
    n = 5
    p = n * (n + 1) // 2
    rand_gen = np.random.RandomState(0)
    # when diagonal is included
    vec = rand_gen.rand(p)
    sym = vec_to_sym_matrix(vec)
    assert_array_almost_equal(sym_matrix_to_vec(sym), vec)

    # when diagonal given separately
    diagonal = rand_gen.rand(n + 1)
    sym = vec_to_sym_matrix(vec, diagonal=diagonal)
    assert_array_almost_equal(sym_matrix_to_vec(sym, discard_diagonal=True),
                              vec)

    # multiple matrices case when diagonal is included
    vecs = np.asarray([vec, 2. * vec, 0.5 * vec])
    syms = vec_to_sym_matrix(vecs)
    assert_array_almost_equal(sym_matrix_to_vec(syms), vecs)

    # multiple matrices case when diagonal is given seperately
    diagonals = np.asarray([diagonal, 3. * diagonal, -diagonal])
    syms = vec_to_sym_matrix(vecs, diagonal=diagonals)
    assert_array_almost_equal(sym_matrix_to_vec(syms, discard_diagonal=True),
                              vecs)
Пример #6
0
    def transform(self, X):
        """Transform subjects timeseries to shrunk covariances in the tangent 
        space using the population prior.

        Parameters
        ----------
        X : list of n_subjects numpy.ndarray, shapes (n_samples, n_features)
            The input subjects time series. The number of samples may differ
            from one subject to another

        Returns
        -------
        shrunk_connectivities : numpy.ndarray, shape 
        (n_subjects, n_features * (n_features + 1) / 2).
            Shrunk individual connectivities as vectors.
        """
        # compute covariances from timeseries
        covariances = [self.cov_estimator_.fit(x).covariance_ for x in X]

        # transform in the tangent space
        connectivities = [
            _map_eigenvalues(
                np.log,
                self.prior_whitening_.dot(cov).dot(self.prior_whitening_))
            for cov in covariances
        ]

        connectivities = np.array(connectivities)
        connectivities = sym_matrix_to_vec(connectivities)

        shrunk_connectivities = [
            shrunk_covariance_embedding(
                cov_embedding=c,
                prior_cov_approx=self.prior_cov_approx_,
                shrinkage=self.shrinkage,
            ) for c in connectivities
        ]
        return shrunk_connectivities
def test_connectivity_measure_outputs():
    n_subjects = 10
    n_features = 49

    # Generate signals and compute covariances
    emp_covs = []
    ledoit_covs = []
    signals = []
    ledoit_estimator = LedoitWolf()
    for k in range(n_subjects):
        n_samples = 200 + k
        signal, _, _ = generate_signals(n_features=n_features, n_confounds=5,
                                        length=n_samples, same_variance=False)
        signals.append(signal)
        signal -= signal.mean(axis=0)
        emp_covs.append((signal.T).dot(signal) / n_samples)
        ledoit_covs.append(ledoit_estimator.fit(signal).covariance_)

    kinds = ["covariance", "correlation", "tangent", "precision",
             "partial correlation"]

    # Check outputs properties
    for cov_estimator, covs in zip([EmpiricalCovariance(), LedoitWolf()],
                                   [emp_covs, ledoit_covs]):
        input_covs = copy.copy(covs)
        for kind in kinds:
            conn_measure = ConnectivityMeasure(kind=kind,
                                               cov_estimator=cov_estimator)
            connectivities = conn_measure.fit_transform(signals)

            # Generic
            assert_true(isinstance(connectivities, np.ndarray))
            assert_equal(len(connectivities), len(covs))

            for k, cov_new in enumerate(connectivities):
                assert_array_equal(input_covs[k], covs[k])
                assert(is_spd(covs[k], decimal=7))

                # Positive definiteness if expected and output value checks
                if kind == "tangent":
                    assert_array_almost_equal(cov_new, cov_new.T)
                    gmean_sqrt = _map_eigenvalues(np.sqrt,
                                                  conn_measure.mean_)
                    assert(is_spd(gmean_sqrt, decimal=7))
                    assert(is_spd(conn_measure.whitening_, decimal=7))
                    assert_array_almost_equal(conn_measure.whitening_.dot(
                        gmean_sqrt), np.eye(n_features))
                    assert_array_almost_equal(gmean_sqrt.dot(
                        _map_eigenvalues(np.exp, cov_new)).dot(gmean_sqrt),
                        covs[k])
                elif kind == "precision":
                    assert(is_spd(cov_new, decimal=7))
                    assert_array_almost_equal(cov_new.dot(covs[k]),
                                              np.eye(n_features))
                elif kind == "correlation":
                    assert(is_spd(cov_new, decimal=7))
                    d = np.sqrt(np.diag(np.diag(covs[k])))
                    if cov_estimator == EmpiricalCovariance():
                        assert_array_almost_equal(d.dot(cov_new).dot(d),
                                                  covs[k])
                    assert_array_almost_equal(np.diag(cov_new),
                                              np.ones((n_features)))
                elif kind == "partial correlation":
                    prec = linalg.inv(covs[k])
                    d = np.sqrt(np.diag(np.diag(prec)))
                    assert_array_almost_equal(d.dot(cov_new).dot(d), -prec +
                                              2 * np.diag(np.diag(prec)))

    # Check the mean_
    for kind in kinds:
        conn_measure = ConnectivityMeasure(kind=kind)
        conn_measure.fit_transform(signals)
        assert_equal((conn_measure.mean_).shape, (n_features, n_features))
        if kind != 'tangent':
            assert_array_almost_equal(
                conn_measure.mean_,
                np.mean(conn_measure.transform(signals), axis=0))

    # Check that the mean isn't modified in transform
    conn_measure = ConnectivityMeasure(kind='covariance')
    conn_measure.fit(signals[:1])
    mean = conn_measure.mean_
    conn_measure.transform(signals[1:])
    assert_array_equal(mean, conn_measure.mean_)

    # Check vectorization option
    for kind in kinds:
        conn_measure = ConnectivityMeasure(kind=kind)
        connectivities = conn_measure.fit_transform(signals)
        conn_measure = ConnectivityMeasure(vectorize=True, kind=kind)
        vectorized_connectivities = conn_measure.fit_transform(signals)
        assert_array_almost_equal(vectorized_connectivities,
                                  sym_matrix_to_vec(connectivities))

    # Check not fitted error
    assert_raises_regex(
        ValueError, 'has not been fitted. ',
        ConnectivityMeasure().inverse_transform,
        vectorized_connectivities)

    # Check inverse transformation
    kinds.remove('tangent')
    for kind in kinds:
        # without vectorization: input matrices are returned with no change
        conn_measure = ConnectivityMeasure(kind=kind)
        connectivities = conn_measure.fit_transform(signals)
        assert_array_almost_equal(
            conn_measure.inverse_transform(connectivities), connectivities)

        # with vectorization: input vectors are reshaped into matrices
        # if diagonal has not been discarded
        conn_measure = ConnectivityMeasure(kind=kind, vectorize=True)
        vectorized_connectivities = conn_measure.fit_transform(signals)
        assert_array_almost_equal(
            conn_measure.inverse_transform(vectorized_connectivities),
            connectivities)

    # with vectorization if diagonal has been discarded
    for kind in ['correlation', 'partial correlation']:
        connectivities = ConnectivityMeasure(kind=kind).fit_transform(signals)
        conn_measure = ConnectivityMeasure(kind=kind, vectorize=True,
                                           discard_diagonal=True)
        vectorized_connectivities = conn_measure.fit_transform(signals)
        assert_array_almost_equal(
            conn_measure.inverse_transform(vectorized_connectivities),
            connectivities)

    for kind in ['covariance', 'precision']:
        connectivities = ConnectivityMeasure(kind=kind).fit_transform(signals)
        conn_measure = ConnectivityMeasure(kind=kind, vectorize=True,
                                           discard_diagonal=True)
        vectorized_connectivities = conn_measure.fit_transform(signals)
        diagonal = np.array([np.diagonal(conn) / sqrt(2) for conn in
                             connectivities])
        inverse_transformed = conn_measure.inverse_transform(
            vectorized_connectivities, diagonal=diagonal)
        assert_array_almost_equal(inverse_transformed, connectivities)
        assert_raises_regex(ValueError,
                            'can not reconstruct connectivity matrices',
                            conn_measure.inverse_transform,
                            vectorized_connectivities)

    # for 'tangent' kind, covariance matrices are reconstructed
    # without vectorization
    tangent_measure = ConnectivityMeasure(kind='tangent')
    displacements = tangent_measure.fit_transform(signals)
    covariances = ConnectivityMeasure(kind='covariance').fit_transform(
        signals)
    assert_array_almost_equal(
        tangent_measure.inverse_transform(displacements), covariances)

    # with vectorization
    # when diagonal has not been discarded
    tangent_measure = ConnectivityMeasure(kind='tangent', vectorize=True)
    vectorized_displacements = tangent_measure.fit_transform(signals)
    assert_array_almost_equal(
        tangent_measure.inverse_transform(vectorized_displacements),
        covariances)

    # when diagonal has been discarded
    tangent_measure = ConnectivityMeasure(kind='tangent', vectorize=True,
                                          discard_diagonal=True)
    vectorized_displacements = tangent_measure.fit_transform(signals)
    diagonal = np.array([np.diagonal(matrix) / sqrt(2) for matrix in
                         displacements])
    inverse_transformed = tangent_measure.inverse_transform(
        vectorized_displacements, diagonal=diagonal)
    assert_array_almost_equal(inverse_transformed, covariances)
    assert_raises_regex(ValueError,
                        'can not reconstruct connectivity matrices',
                        tangent_measure.inverse_transform,
                        vectorized_displacements)
def test_connectivity_measure_outputs():
    n_subjects = 10
    n_features = 49

    # Generate signals and compute covariances
    emp_covs = []
    ledoit_covs = []
    signals = []
    ledoit_estimator = LedoitWolf()
    for k in range(n_subjects):
        n_samples = 200 + k
        signal, _, _ = generate_signals(n_features=n_features, n_confounds=5,
                                        length=n_samples, same_variance=False)
        signals.append(signal)
        signal -= signal.mean(axis=0)
        emp_covs.append((signal.T).dot(signal) / n_samples)
        ledoit_covs.append(ledoit_estimator.fit(signal).covariance_)

    kinds = ["covariance", "correlation", "tangent", "precision",
             "partial correlation"]

    # Check outputs properties
    for cov_estimator, covs in zip([EmpiricalCovariance(), LedoitWolf()],
                                   [emp_covs, ledoit_covs]):
        input_covs = copy.copy(covs)
        for kind in kinds:
            conn_measure = ConnectivityMeasure(kind=kind,
                                               cov_estimator=cov_estimator)
            connectivities = conn_measure.fit_transform(signals)

            # Generic
            assert isinstance(connectivities, np.ndarray)
            assert len(connectivities) == len(covs)

            for k, cov_new in enumerate(connectivities):
                assert_array_equal(input_covs[k], covs[k])
                assert(is_spd(covs[k], decimal=7))

                # Positive definiteness if expected and output value checks
                if kind == "tangent":
                    assert_array_almost_equal(cov_new, cov_new.T)
                    gmean_sqrt = _map_eigenvalues(np.sqrt,
                                                  conn_measure.mean_)
                    assert(is_spd(gmean_sqrt, decimal=7))
                    assert(is_spd(conn_measure.whitening_, decimal=7))
                    assert_array_almost_equal(conn_measure.whitening_.dot(
                        gmean_sqrt), np.eye(n_features))
                    assert_array_almost_equal(gmean_sqrt.dot(
                        _map_eigenvalues(np.exp, cov_new)).dot(gmean_sqrt),
                        covs[k])
                elif kind == "precision":
                    assert(is_spd(cov_new, decimal=7))
                    assert_array_almost_equal(cov_new.dot(covs[k]),
                                              np.eye(n_features))
                elif kind == "correlation":
                    assert(is_spd(cov_new, decimal=7))
                    d = np.sqrt(np.diag(np.diag(covs[k])))
                    if cov_estimator == EmpiricalCovariance():
                        assert_array_almost_equal(d.dot(cov_new).dot(d),
                                                  covs[k])
                    assert_array_almost_equal(np.diag(cov_new),
                                              np.ones((n_features)))
                elif kind == "partial correlation":
                    prec = linalg.inv(covs[k])
                    d = np.sqrt(np.diag(np.diag(prec)))
                    assert_array_almost_equal(d.dot(cov_new).dot(d), -prec +
                                              2 * np.diag(np.diag(prec)))

    # Check the mean_
    for kind in kinds:
        conn_measure = ConnectivityMeasure(kind=kind)
        conn_measure.fit_transform(signals)
        assert (conn_measure.mean_).shape == (n_features, n_features)
        if kind != 'tangent':
            assert_array_almost_equal(
                conn_measure.mean_,
                np.mean(conn_measure.transform(signals), axis=0))

    # Check that the mean isn't modified in transform
    conn_measure = ConnectivityMeasure(kind='covariance')
    conn_measure.fit(signals[:1])
    mean = conn_measure.mean_
    conn_measure.transform(signals[1:])
    assert_array_equal(mean, conn_measure.mean_)

    # Check vectorization option
    for kind in kinds:
        conn_measure = ConnectivityMeasure(kind=kind)
        connectivities = conn_measure.fit_transform(signals)
        conn_measure = ConnectivityMeasure(vectorize=True, kind=kind)
        vectorized_connectivities = conn_measure.fit_transform(signals)
        assert_array_almost_equal(vectorized_connectivities,
                                  sym_matrix_to_vec(connectivities))

    # Check not fitted error
    with pytest.raises(ValueError, match='has not been fitted. '):
        ConnectivityMeasure().inverse_transform(vectorized_connectivities)

    # Check inverse transformation
    kinds.remove('tangent')
    for kind in kinds:
        # without vectorization: input matrices are returned with no change
        conn_measure = ConnectivityMeasure(kind=kind)
        connectivities = conn_measure.fit_transform(signals)
        assert_array_almost_equal(
            conn_measure.inverse_transform(connectivities), connectivities)

        # with vectorization: input vectors are reshaped into matrices
        # if diagonal has not been discarded
        conn_measure = ConnectivityMeasure(kind=kind, vectorize=True)
        vectorized_connectivities = conn_measure.fit_transform(signals)
        assert_array_almost_equal(
            conn_measure.inverse_transform(vectorized_connectivities),
            connectivities)

    # with vectorization if diagonal has been discarded
    for kind in ['correlation', 'partial correlation']:
        connectivities = ConnectivityMeasure(kind=kind).fit_transform(signals)
        conn_measure = ConnectivityMeasure(kind=kind, vectorize=True,
                                           discard_diagonal=True)
        vectorized_connectivities = conn_measure.fit_transform(signals)
        assert_array_almost_equal(
            conn_measure.inverse_transform(vectorized_connectivities),
            connectivities)

    for kind in ['covariance', 'precision']:
        connectivities = ConnectivityMeasure(kind=kind).fit_transform(signals)
        conn_measure = ConnectivityMeasure(kind=kind, vectorize=True,
                                           discard_diagonal=True)
        vectorized_connectivities = conn_measure.fit_transform(signals)
        diagonal = np.array([np.diagonal(conn) / sqrt(2) for conn in
                             connectivities])
        inverse_transformed = conn_measure.inverse_transform(
            vectorized_connectivities, diagonal=diagonal)
        assert_array_almost_equal(inverse_transformed, connectivities)
        with pytest.raises(ValueError,
                           match='can not reconstruct connectivity matrices'):
            conn_measure.inverse_transform(vectorized_connectivities)

    # for 'tangent' kind, covariance matrices are reconstructed
    # without vectorization
    tangent_measure = ConnectivityMeasure(kind='tangent')
    displacements = tangent_measure.fit_transform(signals)
    covariances = ConnectivityMeasure(kind='covariance').fit_transform(
        signals)
    assert_array_almost_equal(
        tangent_measure.inverse_transform(displacements), covariances)

    # with vectorization
    # when diagonal has not been discarded
    tangent_measure = ConnectivityMeasure(kind='tangent', vectorize=True)
    vectorized_displacements = tangent_measure.fit_transform(signals)
    assert_array_almost_equal(
        tangent_measure.inverse_transform(vectorized_displacements),
        covariances)

    # when diagonal has been discarded
    tangent_measure = ConnectivityMeasure(kind='tangent', vectorize=True,
                                          discard_diagonal=True)
    vectorized_displacements = tangent_measure.fit_transform(signals)
    diagonal = np.array([np.diagonal(matrix) / sqrt(2) for matrix in
                         displacements])
    inverse_transformed = tangent_measure.inverse_transform(
        vectorized_displacements, diagonal=diagonal)
    assert_array_almost_equal(inverse_transformed, covariances)
    with pytest.raises(ValueError,
                       match='can not reconstruct connectivity matrices'):
        tangent_measure.inverse_transform(vectorized_displacements)