def test_fail_fetch_harvard_oxford(): # specify non-existing atlas item assert_raises_regex(ValueError, 'Invalid atlas name', datasets.fetch_harvard_oxford, 'not_inside') # specify existing atlas item target_atlas = 'cort-maxprob-thr0-1mm' target_atlas_fname = 'HarvardOxford-' + target_atlas + '.nii.gz' HO_dir = os.path.join(tmpdir, 'harvard_oxford') os.mkdir(HO_dir) nifti_dir = os.path.join(HO_dir, 'HarvardOxford') os.mkdir(nifti_dir) target_atlas_nii = os.path.join(nifti_dir, target_atlas_fname) datasets.load_mni152_template().to_filename(target_atlas_nii) dummy = open(os.path.join(HO_dir, 'HarvardOxford-Cortical.xml'), 'w') dummy.write("<?xml version='1.0' encoding='us-ascii'?> " "<metadata>" "</metadata>") dummy.close() out_nii, arr = datasets.fetch_harvard_oxford(target_atlas, data_dir=tmpdir) assert_true(isinstance(nibabel.load(out_nii), nibabel.Nifti1Image)) assert_true(isinstance(arr, np.ndarray)) assert_true(len(arr) > 0)
""" Basic Atlas plotting ======================= Plot the regions of a reference atlas (here the Harvard-Oxford atlas). """ import matplotlib.pyplot as plt from nilearn import datasets from nilearn import plotting atlas_filename, labels = datasets.fetch_harvard_oxford('cort-maxprob-thr25-2mm') plotting.plot_roi(atlas_filename, title="Harvard Oxford atlas") plt.show()
from sklearn.multiclass import OneVsOneClassifier, OneVsRestClassifier # from sklearn.pipeline import Pipeline from sklearn import linear_model from sklearn import preprocessing from sklearn.cross_validation import cross_val_score # from ni_rrr import fit_predict from scipy.stats import spearmanr from scipy import stats, linalg from joblib import Parallel, delayed haxby_dataset = datasets.fetch_haxby_simple() func_filename = haxby_dataset.func mask_filename = haxby_dataset.mask atlas_filename, labels = datasets.fetch_harvard_oxford( 'cort-maxprob-thr25-2mm', symmetric_split=True) affine = load(mask_filename).get_affine() shape = load(mask_filename).get_shape() atlas = image.resample_img(atlas_filename, target_affine=affine, target_shape=shape, interpolation='nearest') roi_masker = input_data.NiftiLabelsMasker(labels_img=atlas, mask_img=mask_filename) roi_masker.fit(mask_filename) ## just to have it fitted labels = np.recfromcsv(haxby_dataset.session_target[0], delimiter=" ") target = labels['labels'] ################################################### y, session = np.loadtxt(haxby_dataset.session_target).astype('int').T
from sklearn.multiclass import OneVsOneClassifier, OneVsRestClassifier # from sklearn.pipeline import Pipeline from sklearn import linear_model from sklearn import preprocessing from sklearn.cross_validation import cross_val_score # from ni_rrr import fit_predict from scipy.stats import spearmanr from scipy import stats, linalg from joblib import Parallel, delayed haxby_dataset = datasets.fetch_haxby_simple() func_filename = haxby_dataset.func mask_filename = haxby_dataset.mask atlas_filename, labels = datasets.fetch_harvard_oxford( 'cort-maxprob-thr25-2mm', symmetric_split=True) affine = load(mask_filename).get_affine() shape = load(mask_filename).get_shape() atlas = image.resample_img(atlas_filename, target_affine=affine, target_shape=shape, interpolation='nearest') roi_masker = input_data.NiftiLabelsMasker(labels_img=atlas, mask_img=mask_filename) roi_masker.fit(mask_filename) ## just to have it fitted labels = np.recfromcsv(haxby_dataset.session_target[0], delimiter=" ") target = labels['labels'] ###################################################
""" Basic Atlas plotting ======================= Plot the regions of a reference atlas (here the Harvard-Oxford atlas). """ import matplotlib.pyplot as plt from nilearn import datasets from nilearn import plotting atlas_filename, labels = datasets.fetch_harvard_oxford( 'cort-maxprob-thr25-2mm') plotting.plot_roi(atlas_filename, title="Harvard Oxford atlas") plt.show()