def test_plot_img_comparison(): fig, axes = plt.subplots(2, 1) axes = axes.ravel() kwargs = {"shape": (3, 2, 4), "length": 5} query_images, mask_img = data_gen.generate_fake_fmri( rand_gen=np.random.RandomState(0), **kwargs) # plot_img_comparison doesn't handle 4d images ATM query_images = list(image.iter_img(query_images)) target_images, _ = data_gen.generate_fake_fmri( rand_gen=np.random.RandomState(1), **kwargs) target_images = list(image.iter_img(target_images)) target_images[0] = query_images[0] masker = NiftiMasker(mask_img).fit() correlations = plotting.plot_img_comparison( target_images, query_images, masker, axes=axes, src_label="query") assert len(correlations) == len(query_images) assert correlations[0] == pytest.approx(1.) ax_0, ax_1 = axes # 5 scatterplots assert len(ax_0.collections) == 5 assert len(ax_0.collections[0].get_edgecolors() == masker.transform( target_images[0]).ravel().shape[0]) assert ax_0.get_ylabel() == "query" assert ax_0.get_xlabel() == "image set 1" # 5 regression lines assert len(ax_0.lines) == 5 assert ax_0.lines[0].get_linestyle() == "--" assert ax_1.get_title() == "Histogram of imgs values" assert len(ax_1.patches) == 5 * 2 * 128 correlations_1 = plotting.plot_img_comparison( target_images, query_images, masker, plot_hist=False) assert np.allclose(correlations, correlations_1)
threshold=norm.isf(0.001), title='Nilearn Z map of "StopSuccess - Go" (unc p<0.001)', plot_abs=False, display_mode='ortho') plotting.plot_glass_brain( fsl_z_map, colorbar=True, threshold=norm.isf(0.001), title='FSL Z map of "StopSuccess - Go" (unc p<0.001)', plot_abs=False, display_mode='ortho') plt.show() from nilearn.plotting import plot_img_comparison plot_img_comparison([z_map], [fsl_z_map], model.masker_, ref_label='Nilearn', src_label='FSL') plt.show() ############################################################################# # Simple statistical report of thresholded contrast # ----------------------------------------------------- # We display the contrast plot and table with cluster information from nilearn.plotting import plot_contrast_matrix plot_contrast_matrix('StopSuccess - Go', design_matrix) plotting.plot_glass_brain(z_map, colorbar=True, threshold=norm.isf(0.001), plot_abs=False, display_mode='z', figure=plt.figure(figsize=(4, 4)))